Skip to main content
Log in

Insights into the molecular basis of social behaviour from studies on the honeybee, Apis mellifera

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

The honeybee, Apis mellifera, has been the most important insect species for the study of social behaviour. With the recent release of its genome sequence, the honeybee has emerged as an excellent model for molecular studies of social behaviour. A key feature of eusocial species is a complex division of labour. Adult honeybees perform a series of tasks in the hive when they are young and then shift to foraging for nectar or pollen outside the hive when they are 2–3 weeks of age. This transition from working in the hive to foraging involves changes in the expression of thousands of genes. In this review, we focus first on recent advances in understanding of the widespread changes in gene activity that accompany the transition to foraging. Thereafter, we examine three genes in particular, foraging, malvolio and vitellogenin, all implicated in this striking behavioural change in the life of the honeybee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amdam GV, Omholt SW (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J Theor Biol 223:451–464

    Article  PubMed  CAS  Google Scholar 

  • Amdam GV, Norberg K, Fondrk MK, Page RE (2004) Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc Natl Acad Sci USA 101:11350–11355

    Article  PubMed  CAS  Google Scholar 

  • Amdam GV, Csondes A, Fondrk MK, Page RE (2006a) Complex social behaviour derived from maternal reproductive traits. Nature 439:76–78

    Article  PubMed  CAS  Google Scholar 

  • Amdam GV, Norberg K, Page JRE, Erber J, Scheiner R (2006b) Downregulation of vitellogenin gene activity increases the gustatory responsiveness of honey bee workers (Apis mellifera). Behav Brain Res 169:201–205

    Article  PubMed  CAS  Google Scholar 

  • Ashraf SI, Hu XD, Roote J, Ip YT (1999) The mesoderm determinant Snail collaborates with related zinc-finger proteins to control Drosophila neurogenesis. EMBO J 18:6426–6438

    Article  PubMed  CAS  Google Scholar 

  • Barchuk AR, Maleszka R, Simoes ZLP (2004) Apis mellifera ultraspiracle: cDNA sequence and rapid up-regulation by juvenile hormone. Insect Mol Biol 13:459–467

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of gene action across different time scales on behavior. Science 296:741–744

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Leung HT, Pak WL, Sokolowski MB, Robinson GE (2003) cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. J Exp Biol 206:2507–2515

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Dudek NL, Robinson GE (2004) Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honeybee division of labor. J Exp Biol 207:3281–3288

    Article  PubMed  CAS  Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Ann Rev Entomol 46:413–440

    Article  CAS  Google Scholar 

  • Bloch G, Wheeler D, Robinson GE (2002) In: Pfaff D, Arnold A, Etgen A, Fahrbach SE, Moss R, Rubin R (eds) Hormones, brain and behavior. Academic Press, San Diego, p 195–235

    Google Scholar 

  • Calderone NW, Page RE (1988) Genotypic variability in age polyethism and task specialization in the honey bee, Apis Mellifera (Hymenoptera, Apidae). Behav Ecol Sociobiol 22:17–25

    Article  Google Scholar 

  • Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21:6395–6404

    PubMed  CAS  Google Scholar 

  • Frankfort BJ, Mardon G (2002) R8 development in the Drosophila eye: a paradigm for neural selection and differentiation. Development 129:1295–1306

    PubMed  CAS  Google Scholar 

  • Fry SN, Wehner R (2002) Honeybees store landmarks in an egocentric frame of reference. J Comp Physiol A 187:1009–1016

    Article  Google Scholar 

  • Fujiwara M, Sengupta P, McIntire SL (2002) Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron 36:1091–1102

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W (1986) Physiological and anatomical properties of optical input-fibers to the mushroom body in the bee brain. J Insect Physiol 32:695–704

    Article  Google Scholar 

  • Gronenberg W (1999) Modality-specific segregation of input to ant mushroom bodies. Brain Behav Evol 54:85–95

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W (2001) Subdivisions of hymenopteran mushroom body calyces by their afferent supply. J Comp Neurol 435:474–489

    Article  PubMed  CAS  Google Scholar 

  • Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE (2003) Pheromone-mediated gene expression in the honeybee brain. Proc Natl Acad Sci USA 100:14519–14525

    Article  PubMed  CAS  Google Scholar 

  • Guez D, Belzunces LP, Maleszka R (2003) Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol Biochem Behav 75:217–222

    Article  PubMed  CAS  Google Scholar 

  • Guidugli KR, Nascimento AM, Amdam GV, Barchuk AR, Omholt S, Simoes ZLP, Hartfelder K (2005) Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett 579:4961–4965

    Article  PubMed  CAS  Google Scholar 

  • Heng JIT, Tan SS (2003) The role of class IHLH genes in neural development—have they been overlooked? Bioessays 25:709–716

    Article  CAS  Google Scholar 

  • Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 444:512–512

    Article  Google Scholar 

  • Humphries MA, Fondrk MK, Page RE (2005) Locomotion and the pollen hoarding behavioral syndrome of the honeybee (Apis mellifera L.). J Comp Physiol A 191:669–674

    Article  CAS  Google Scholar 

  • Hunt GJ, Amdam GV, Schlipalius D, Emore C, Sardesai N, Williams CE, Rueppell O, Guzman-Novoa E, Arechavaleta-Velasco M, Chandra S, Fondrk MK, Beye M, Page RE (2007) Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94:247–267

    Article  PubMed  CAS  Google Scholar 

  • Ingram KK, Oefner P, Gordon DM (2005) Task-specific expression of the foraging gene in harvester ants. Mol Ecol 14:813–818

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Sharp PA (1997) Ultraspiracle: an invertebrate nuclear receptor for juvenile hormones. Proc Natl Acad Sci USA 94:13499–13503

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Greggers U (1985) Natural phototaxis and its relationship to color-vision in honeybees. J Comp Physiol A 157:311–321

    Article  Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Article  Google Scholar 

  • Nassel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68:1–84

    Article  PubMed  Google Scholar 

  • Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5:673–677

    Article  CAS  Google Scholar 

  • Orgad S, Nelson H, Segal D, Nelson N (1998) Metal ions suppress the abnormal taste behavior of the Drosophila mutant malvolio. J Exp Biol 201:115–120

    PubMed  CAS  Google Scholar 

  • Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA, Coulthard A, Pereira HS, Greenspan RJ, Sokolowski MB (1997) Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–836

    Article  PubMed  CAS  Google Scholar 

  • Page RE, Robinson GE, Britton DS, Fondrk MK (1992) Genotypic variability for rates of behavioral-development in worker honeybees (Apis Mellifera L). Behav Ecol 3:173–180

    Article  Google Scholar 

  • Page RE, Erber J (2002) Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 89:91–106

    Article  PubMed  CAS  Google Scholar 

  • Page RE, Scheiner R, Erber J, Amdam GV (2006) The development and evolution of division of labor and foraging specialization in a social insect (Apis mellifera L.). Curr Top Dev Biol 74:253–286

    Article  PubMed  CAS  Google Scholar 

  • Page RE, Amdam GV (2007) The making of a social insect: developmental architectures of social design. Bioessays 29:334–343

    Article  PubMed  CAS  Google Scholar 

  • Pankiw T, Huang ZY, Winston ML, Robinson GE (1998) Queen mandibular gland pheromone influences worker honeybee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J Insect Physiol 44:685–692

    Article  PubMed  Google Scholar 

  • Pankiw T, Page RE (1999) The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honeybees (Apis mellifera L.). J Comp Physiol A 185:207–213

    Article  PubMed  CAS  Google Scholar 

  • Pankiw T, Page RE (2000) Response thresholds to sucrose predict foraging division of labor in honeybees. Behav Ecol Sociobiol 47:265–267

    Article  Google Scholar 

  • Pankiw T, Page RE (2003) Effect of pheromones, hormones, and handling on sucrose response thresholds of honey bees (Apis mellifera L.). J Comp Physiol A 189:675–684

    Article  CAS  Google Scholar 

  • Robinson GE (2002) Genomics and integrative analyses of division of labor in honeybee colonies. Am Nat 160:S160–S172

    Article  Google Scholar 

  • Rodrigues V, Cheah PY, Ray K, Chia W (1995) Malvolio, the Drosophila homolog of mouse NRAMP-1 (Bcg), is expressed in macrophages and in the nervous system and is required for normal taste behavior. EMBO J 14:3007–3020

    PubMed  CAS  Google Scholar 

  • Rueppell O, Pankiw T, Nielsen DI, Fondrk MK, Beye M, Page RE (2004) The genetic architecture of the behavioral ontogeny of foraging in honeybee workers. Genetics 167:1767–1779

    Article  PubMed  CAS  Google Scholar 

  • Rueppell O, Chandra SBC, Pankiw T, Fondrk MK, Beye M, Hunt G, Page RE (2006) The genetic architecture of sucrose responsiveness in the honeybee (Apis mellifera L.). Genetics 172:243–251

    Article  PubMed  CAS  Google Scholar 

  • Scheiner R, Page RE, Erber J (2004a) Sucrose responsiveness and behavioral plasticity in honeybees (Apis mellifera). Apidologie 35:133–142

    Article  Google Scholar 

  • Scheiner R, Sokolowski MB, Erber J (2004b) Activity of cGMP-dependent protein kinase (PKG) affects sucrose responsiveness and habituation in Drosophila melanogaster. Learn Mem 11:303–311

    Article  PubMed  Google Scholar 

  • Scheiner R, Kuritz-Kaiser A, Menzel R, Erber J (2005) Sensory responsiveness and the effects of equal subjective rewards on tactile learning and memory of honeybees. Learn Mem 12:626–635

    Article  PubMed  Google Scholar 

  • Schulz DJ, Huang ZY, Robinson GE (1998) Effects of colony food shortage on behavioral development in honeybees. Behav Ecol Sociobiol 42:295–303

    Article  Google Scholar 

  • Schulz DJ, Barron AB, Robinson GE (2002) A role for octopamine in honeybee division of labor. Brain Behav Evol 60:350–359

    Article  PubMed  Google Scholar 

  • Schulz DJ, Pankiw T, Fondrk MK, Robinson GE, Page RE (2004) Comparisons of juvenile hormone hemolymph and octopamine brain titers in honeybees (Hymenoptera : Apidae) selected for high and low pollen hoarding. Ann Entomol Soc Am 97:1313–1319

    Article  CAS  Google Scholar 

  • Seely T (1995) The wisdom of the hive: the social physiology of honeybee colonies. Harvard University Press, Cambridge

    Google Scholar 

  • Sinha S, Ling X, Whitfield CW, Zhai CX, Robinson GE (2006) Genome scan for cis-regulatory DNA motifs associated with social behavior in honeybees. Proc Natl Acad Sci USA 103:16352–16357

    Article  PubMed  CAS  Google Scholar 

  • Southwick EE, Moritz RFA (1987) Social-control of air ventilation in colonies of honeybees, Apis Mellifera. J Insect Physiol 33:623–626

    Article  Google Scholar 

  • Supek F, Supekova L, Nelson H, Nelson N (1996) A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci USA 93:5105–5110

    Article  PubMed  CAS  Google Scholar 

  • Takeda A (2003) Manganese action in brain function. Brain Res Brain Res Rev 41:79–87

    Article  PubMed  CAS  Google Scholar 

  • Toth AL, Kantarovich S, Meisel AF, Robinson GE (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees. J Exp Biol 208:4641–4649

    Article  PubMed  Google Scholar 

  • Toth AL, Robinson GE (2005) Worker nutrition and division of labour in honeybees. Anim Behav 69:427–435

    Article  Google Scholar 

  • Toth AL, Robinson GE (2007) Evo–devo and the evolution of social behavior. Trends Genet 23:334–341

    Article  PubMed  CAS  Google Scholar 

  • Toth AL, Varala K, Newman TC, Miguez FE, Hutchison SK, Willoughby DA, Simons JF, Egholm M, Hunt JH, Hudson ME, Robinson GE (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318:441–444

    Article  PubMed  CAS  Google Scholar 

  • Velarde R, Robinson G, Fahrbach S (2006) Nuclear receptors of the honeybee: annotation and expression in the adult brain. Insect Mol Biol 15:583–95

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (1996) In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper wasp. Oxford University Press, New York, pp 290–317

    Google Scholar 

  • Whitfield CW, Band MR, Bonaldo MF, Kumar CG, Liu L, Pardinas JR, Robertson HM, Soares MB, Robinson GE (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honeybee. Genome Res 12:555–566

    Article  PubMed  Google Scholar 

  • Whitfield CW, Cziko AM, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honeybees. Science 302:296–299

    Article  PubMed  CAS  Google Scholar 

  • Whitfield CW, Ben-Shahar Y, Brillet C, Leoncini I, Crauser D, LeConte Y, Rodriguez-Zas S, Robinson GE (2006) Genomic dissection of behavioral maturation in the honeybee. Proc Natl Acad Sci USA 103:16068–16075

    Article  PubMed  CAS  Google Scholar 

  • Winston ML (1987) The biology of the honeybee. Harvard University Press, Cambridge

    Google Scholar 

  • Wolschin F, Amdam GV (2007) Plasticity and robustness of protein patterns during reversible development in the honeybee (Apis mellifera). Anal Bioanal Chem 398:1095–1100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Raymond-Delpech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denison, R., Raymond-Delpech, V. Insights into the molecular basis of social behaviour from studies on the honeybee, Apis mellifera . Invert Neurosci 8, 1–9 (2008). https://doi.org/10.1007/s10158-008-0066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-008-0066-6

Keywords

Navigation