Skip to main content
Log in

Evolution and RNA Relics. A Systems Biology View

  • Regular article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The genetic code has evolved from its initial non-degenerate wobble version until reaching its present state of degeneracy. By using the stereochemical hypothesis, we revisit the problem of codon assignations to the synonymy classes of amino-acids. We obtain these classes with a simple classifier based on physico-chemical properties of nucleic bases, like hydrophobicity and molecular weight. Then we propose simple RNA (or more generally XNA, with X for D, P or R) ring structures that present, overlap included, one and only one codon by synonymy class as solutions of a combinatory variational problem. We compare these solutions to sequences of present RNAs considered as relics, with a high interspecific invariance, like invariant parts of tRNAs and micro-RNAs. We conclude by emphasizing some optimal properties of the genetic code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://felix.unife.it/Root/d-Biology/d-Genetics-and-evolution/d-tRNA-sequences/t-tRNA-compilation, Compilation of tRNA and tRNA Gene Sequences, 1993.

  2. http://helix.nih.gov/docs/online/mfold/node5.html

References

  • Atlan H (1972) L’organisation Biologique et la Théorie de l’Information. Hermann, Paris

    Google Scholar 

  • Atlan H (2004) Etincelles de Hasard. Le Seuil, Paris

    Google Scholar 

  • Baum TP, Pasqual N, Thuderoz F, Hierle V, Chaume D, Lefranc MP, Jouvin-Marche E, Marche P, Demongeot J (2004) IMGT/GeneInfo: enhancing V(D)J recombination database accessibility. Nucleic Acids Res 32:51–54

    Article  Google Scholar 

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and non conserved human μRNAs. Nat Genet 17:766–770

    Article  Google Scholar 

  • Berezikov E, Plasterk RHA (2005) Camels and zebrafish, viruses and cancer: a microRNA update. Hum Mol Genet 14:183–190

    Article  Google Scholar 

  • Blalock JE, Bost K (1986) Binding of peptides that are specified by complementary RNAs. Biochem J 234:679–683

    Google Scholar 

  • Bosnacki D, ten Eikelder H, Hilbers P (2003) Genetic code as a Gray code revisited. In: Proceedings of the international conference on mathematics and engineering techniques in medicine and biological sciences METMBS’03. CSREA Press, Athens, Georgia, pp 447–456

  • Buzdin A, Gogvadze E, Kovalskaya E, Volchkov P, Ustyogova S, Illarionova A, Fushan A, Vinogradova T, Sverdlov E (2003) The human genome contains many types of chimeric retrogenes generated through in vivo recombination. Nucleic Acids Res 31:4385–4390

    Article  Google Scholar 

  • Chang J, Taylor JM (2003) Susceptibility of human hepatitis delta virus RNAs to small interfering RNA action. J Virol 77:9728–9731

    Article  Google Scholar 

  • Cognet J (2006) Personal communication

  • Dale T, Smith R, Serra MJ (2000) A test of the model to predict unusually stable RNA hairpin loop stability. RNA 6:608–615

    Article  Google Scholar 

  • de Duve C (2002) Life evolving. Oxford University Press, Oxford UK

    Google Scholar 

  • Demongeot J (1978) Sur la possibilité de considérer le code génétique comme un code à enchaînement. Revue de Biomaths 62:61–66

    Google Scholar 

  • Demongeot J, Besson J (1983) Code génétique et codes à enchaînement I. C R Acad Sci 296:807–810

    Google Scholar 

  • Demongeot J, Besson J (1996) Genetic code and cyclic codes II. C R Acad Sci 319:520–528

    Google Scholar 

  • Demongeot J, Moreira A (2007) A possible circular RNA at the origin of life. J Theor Biol 249:314–324

    Article  Google Scholar 

  • Demongeot J, Aracena J, Ben Lamine S, Mermet MA, Cohen O (2000) Hot spots in chromosomal breakage: from description to etiology. In: Sankoff D, Nadeau JH (eds) Comparative genomics. Kluwer, Amsterdam, pp 71–85

    Google Scholar 

  • Demongeot J, Elena A, Weil G (2006) Potential automata. Application to the genetic code III. C R Biol 329:953–962

    Article  Google Scholar 

  • di Giulio M (1992) On the origin of the tRNA molecule. J Theor Biol 159:199–214

    Article  Google Scholar 

  • di Giulio M (1997) On the origin of the genetic code. J Theor Biol 187:573–581

    Article  Google Scholar 

  • Eigen M (1971) Molekuläre selbstorganisation und evolution. Naturwissenschaften 58:465–523

    Article  Google Scholar 

  • Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origin of genetic information. Sci Am 244:88–92

    Article  Google Scholar 

  • Faraut T, Demongeot J (2000) Benefits of a model of segregation for the understanding of chromosomal evolution. In: Sankoff D, Nadeau JH (eds) Comparative genomics. Kluwer, Amsterdam, 13–17

    Google Scholar 

  • Figureau A, Pouzet M (1984) Genetic code and optimal resistance to the effects of mutations. Orig Life 14:579–588

    Article  Google Scholar 

  • Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83:9373–9377

    Article  Google Scholar 

  • Gamow G (1954) Possible relation between deoxyribonucleic acid and protein structures. Nature 173:318–319

    Article  Google Scholar 

  • Gilis D, Massar S, Cerf N, Rooman M (2001) Optimality of the genetic code with respect to protein stability and amino-acids frequencies. Genome Biol 2:1–12

    Article  Google Scholar 

  • Glansdorff P, Prigogine I (1971) Structure, stabilité et fluctuations. Masson, Paris

    Google Scholar 

  • Gottesman S (2005) μ for microbes: noncoding regulatory RNA in bacteria. Trends Genet 21:399–404

    Article  Google Scholar 

  • Hartman H (1984) Speculations on the evolution of the genetic code III. Orig Life 14:643–648

    Article  Google Scholar 

  • Hayes B (1998) The invention of the genetic code. Am Sci 86:8–14

    Article  Google Scholar 

  • He M, Petoukhov S, Ricci P (2004) Genetic code, Hamming distance and stochastic matrices. Bull Math Biol 66:1405–1421

    Article  Google Scholar 

  • Hendry LB, Bransome ED, Hutson MS, Campbell LK (1981). First approximation of a stereochemical rationale for the genetic code based on the topography and physicochemical properties of ‘cavities’ constructed from models of DNA. Proc Natl Acad Sci USA 78:7440–7444

    Article  Google Scholar 

  • Hobish MK, Wickramasinghe NSMD, Ponnamperuma C (1995) Direct interaction between amino-acids and nucleotides as a possible physico-chemical basis for the origin of the genetic code. Adv Space Res 15:365–375

    Article  Google Scholar 

  • Hopfield J (1978) Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and kinetic proofreading. Proc Natl Acad Sci USA 75:4334–4338

    Article  Google Scholar 

  • Hornos JEM, Braggion L, Magini M, Forger M (2004) Symmetry preservation in the evolution of the genetic code. Life 56:125–130

    Google Scholar 

  • Hughes J, Coffin J (2004) Human endogeneous retrovirus K solo-LTR formation and insertional polymorphism: implications for human and viral evolution. Proc Natl Acad Sci USA 101:1668–1672

    Article  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific miR. Science 309:1577–1581

    Article  Google Scholar 

  • Knight R, Landweber L (1998). Rhyme and reason: RNA-arginine interactions and the genetic code. Chem Biol 5:215–220

    Article  Google Scholar 

  • Labouygues JM (1976) New mathematical model of genetic code with passive resistance to mutations or buccion and complementary dynamic protective mechanisms against noise at genome level. Agressologie 17:329–335

    Google Scholar 

  • Laurent M (1996) Prion diseases and the «protein only» hypothesis: a theoretical dynamic study. Biochem J 318:35–39

    Google Scholar 

  • Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560

    Article  Google Scholar 

  • Magini M, Hornos JEM (2003) A dynamical system for the algebraic approach to the genetic code. Braz J Phys 33:825–830

    Article  Google Scholar 

  • Majerfeld I., Puthenvedu D, Yarus M (2005) RNA affinity for molecular l-histidine; Genetic code origins. J Mol Evol 61:226–235

    Article  Google Scholar 

  • Mitaku S, Hirokawa T, Tsuji T (2002) Amphiphilicity index of polar amino-acids as an aid in the characterization of AA preference at membrane-water interfaces. Bioinformatics 18:608–616

    Article  Google Scholar 

  • Moreira A (2003) Partículas y agentes simples en autómatas celulares y otros sistemas discretos. PhD Thesis, Universitad de Chile, Santiago de Chile

  • Oliva R, Cavallo L, Tramontano A (2006) Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions. Nucleic Acids Res 34:865–879

    Article  Google Scholar 

  • Oparine A (1924) Proiskhzhdenie Zhzni. Ind Moskovskii Rabochii, Moscow

    Google Scholar 

  • Pasqual N, Gallagher M, Aude-Garcia C, Loiodice M, Thuderoz F, Demongeot J, Ceredig R, Marche P, Jouvin-Marche E (2002) Quantitative and qualitative changes in ADV-AJ rearrangements during mouse thymocytes differentiation: implication for a limited TCR ALPHA chain repertoire. J Exp Med 196:1163–1174

    Article  Google Scholar 

  • Pelc SR, Welton MGE (1966) Stereochemical relationship between coding triplets and amino-acids. Nature 209:868–870

    Article  Google Scholar 

  • Pohlmeyer R (2007) http://www.biology-online.org/biology-forum/about11707.html

  • Poole A, Jeffares D, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17

    Article  Google Scholar 

  • Rodin S, Ohno S, Rodin A (1993) tRNAs with complementary anticodons: could they reflect early evolution of discriminative genetic code adaptors? Proc Natl Acad Sci USA 90:4723–4727

    Article  Google Scholar 

  • Sciarrino A (2003) A mathematical model accounting for the organization in multiplets of the genetic code. BioSystems 69:1–13

    Article  Google Scholar 

  • Shimizu M (1995) Specific amino-acetylation of C4N hairpin RNAs with the cognate aminoacyl-adenylates in the presence of a dipeptide: origin of the genetic code. J Biochem (Tokyo) 117:23–26

    Google Scholar 

  • Swanson R (1984) A unifying concept for the amino-acid code. Bull Math Biol 46:187–203

    Google Scholar 

  • Szathmary E, Maynard Smith J (1997) From replicators to reproducers: the first major transitions leading to life. J Theor Biol 187:555–571

    Article  Google Scholar 

  • Thom R (1972) Stabilité structurelle et morphogenèse. Benjamin, New York

    Google Scholar 

  • Toulokhonov I, Artsimovitch I, Landick R (2001) Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292:730–733

    Article  Google Scholar 

  • Trifonov E (2000) Consensus temporal order of amino-acids and evolution of the triplet code. Gene 261:139–151

    Article  Google Scholar 

  • Trifonov E, Sussman J (1980) The pitch of chromatin DNA is reflected in nucleotide sequence. Proc Natl Acad Sci USA 77:3816–3820

    Article  Google Scholar 

  • Trinquier G, Sanejouand YH (1998) Which effective property of amino-acids is best preserved by the genetic code? Protein Eng 11:153–169

    Article  Google Scholar 

  • Wang L, Schultz P (2005) Expanding the genetic code. Angew Chem Int Ed 44:34–66

    Article  Google Scholar 

  • Wang YL, Bao J, Sun Y, Yang J (2006) Energy and structural analysis of double nucleic acid triplets. J Theor Biol 238:85–103

    Article  Google Scholar 

  • Welton MGE, Pelc SR (1966) Specificity of the stereochemical relationship between ribonucleic acid-triplets and amino-acids. Nature 209:870–872

    Article  Google Scholar 

  • Yarus M (1989) Specificity of arginine binding by the tetrahymena intron. Biochemistry 28:980–988

    Article  Google Scholar 

  • Yarus M (2000) RNA-ligand chemistry: a testable source for the genetic code. RNA 6:475–484

    Article  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb G, Anderson T (2005) Identification and characterization of new plant μRNAs using EST analysis. Cell Res 15:336–360

    Article  Google Scholar 

Download references

Acknowledgements

We are very indebted to C. de Duve, M. Eigen, J. Maynard-Smith (died in 2004), A. Pacault and J. Tonnelat (both died in 2008), for their marvellous books, and also to F. Kepes for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Demongeot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demongeot, J., Glade, N. & Moreira, A. Evolution and RNA Relics. A Systems Biology View. Acta Biotheor 56, 5–25 (2008). https://doi.org/10.1007/s10441-008-9028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-008-9028-y

Keywords

Navigation