Skip to main content
Log in

A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The use of sulfate-reducing bacteria (SRB) is a cost-effective route to treat sulfate- contaminated waters and precipitate metals. The isolation and characterization of a SRB strain from an AMD in a Brazilian tropical region site was carried out. With a moderately acidic pH (5.5), the C.1 strain began its growth and with continued growth, modified the pH accordingly. The strain under these conditions reduced sulfate at the same rate as an experiment performed using an initial pH of 7.0. The dsrB gene-based molecular approach was used for the characterization of this strain and its phylogenetic affiliation was similar to genus Desulfovibrio sp. The results show an SRB isolate with unexpected sulfate reducing capacity in moderately acidic conditions, bringing new possibilities for the treatment of AMD, as acid water would be neutralized to a mildly acidic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cheng KH, Gu JD (2003) Reduction of chromate (CrO 2−4 ) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52:1523–1529

    Article  CAS  Google Scholar 

  • Cabrera G, Pérez R, Gómez JM, Ábalos A, Cantero D (2006) Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J Hazard Mater 135:40–46

    Article  PubMed  CAS  Google Scholar 

  • Dar SA, Stams AJM, Kuenen JG, Muyzer G (2007a) Co-existence of physiologically similar sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single organic electron donor. Appl Microbiol Biot 75(6):1463–1472

    Article  CAS  Google Scholar 

  • Dar SA, Yao L, Dongen UJ et al (2007b) Analysis of diversity and activity of sulfate reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73(2):594–604

    Article  PubMed  CAS  Google Scholar 

  • Elliott P, Ragusa S, Catcheside D (1998) Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res 32:3724–3730

    Article  CAS  Google Scholar 

  • García C, Moreno DA, Ballester A, Blázquez ML, González F (2001) Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Miner Eng 14(9):997–1008

    Article  Google Scholar 

  • Geets J, Borremans B, Diels L et al (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66(2):194–205

    Article  PubMed  CAS  Google Scholar 

  • Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317

    Article  CAS  Google Scholar 

  • Johnson DB, Sen AM, Kimura S, Rowe OF, Hallberg KB (2006) Novel biosulfidogenic system for selective recovery of metal from acidic leach liquors and streams. Miner Process Extr Metall 115(1):19–24

    Article  CAS  Google Scholar 

  • Joulian C, Ramsing NB, Ingvorsen K (2001) Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Appl Environ Microbiol 67(7):3314–3318

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen AH, Franzmann PD, Purakka JA (2003) Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater. Biodegradation 14:207–217

    Article  PubMed  CAS  Google Scholar 

  • Kappler U, Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol 203:1–9

    CAS  Google Scholar 

  • Kolmert A, Johnson DB (2001) Remedition of acidic waste water using immobilised, acidophilic sulfate-reducing bacteria. J Chem Technol Biotechnol 76:836–843

    Article  CAS  Google Scholar 

  • Leloup J, Quillet L, Berthe T, Petit F (2006) Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol 55:230–238

    Article  PubMed  CAS  Google Scholar 

  • Loy A, Küsel K, Lehner A et al (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl Environ Microbiol 70(12):6998–7009

    Article  PubMed  CAS  Google Scholar 

  • Medircio SN, Leão VA, Teixeira MC (2007) Specific growth rate of sulfate reducing bacteria in the presence of manganese and cadmium. J Hazard Mater 143:593–596

    Article  PubMed  CAS  Google Scholar 

  • Mogensen GL, Kjeldsen KU, Ingvorsen K (2005) Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulphate-reducing bacterium isolated from activated sludge. Anaerobe 11:339–349

    Article  PubMed  CAS  Google Scholar 

  • Ollivier B, Cord-Ruwisch R, Hatchikian EC, Garcia JL (1988) Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 149:447–450

    Article  CAS  Google Scholar 

  • Ouattara AS, Patel BKC, Cayol JL et al. (1999) Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield, and phylogeny of Desulfovibrio alcoholivorans. Int J Syst Bacteriol 49:639–643

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Jiménez JR, Young LY, Kerkhof LJ (2001) Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia ad pure cultures using the dissimilatory sulfite reductase (dsr AB) genes. FEMS Microbiol Ecol 35:145–150

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Habour Laboratory Press, New York

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto TK, Killion HA, Miller GC (2004) Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations. Water Res 38:1405–1418

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Roger AJ, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductase supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    PubMed  CAS  Google Scholar 

  • Zverlov V, Klein M, Lücker S et al (2005) Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187(6):2203–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this work from “FINANCIADORA DE ESTUDOS E PROJETOS—FINEP” is gratefully appreciated. The “Universidade Federal de Ouro Preto” scholarship to L. R. Rampinelli is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Leão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rampinelli, L.R., Azevedo, R.D., Teixeira, M.C. et al. A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions. Biodegradation 19, 613–619 (2008). https://doi.org/10.1007/s10532-007-9166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9166-y

Keywords

Navigation