Skip to main content
Log in

Description of by-product inhibiton effects on biodesulfurization of dibenzothiophene in biphasic media

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

As several authors have reported previously, the Biodesulfurization of hydrodesulfurization recalcitrants, such as dibenzothiophene, is not yet commercially viable because mass transfer limitations and feedback inhibition effects are produced during the conversion. This work has been focused to investigate the inhibition process in aqueous and oil-water systems with two different aerobic biocatalysts types, Rhodococcus erythropolis IGTS8 and Pseudomonas putida CECT 5279. The results obtained have proven that global DBT desulfurization process using CECT 5279 was not clearly deactivated due to final product accumulation, under the experimental conditions assayed. Consistently, the desulfurization pattern has been described with the Michaelis-Menten equation, determining the kinetic parameters. On other hand, the assays have shown that important mass transfer limitations produced the decrease of the yields obtained with this Gram strain in biphasic media. With strain IGTS8 it was observed lower mass transfer problems, but contrary the reaction was severely affected by the final product accumulation, in both aqueous and biphasic systems. Therefore it has been proposed an enzymatic kinetic model with competitive inhibition to describe the BDS evolution pattern when this Gram+ strain was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BDS:

Biodesulfurization

C:

Concentration (μM)

DBT:

Dibenzothiophene

DBTO:

DBT-sulfoxide

DBTO2 :

DBT-sulfone

DC:

Dry cell

HBP:

2-hydroxybiphenyl

HBPSi:

2′-hydroxybephenyl-2-sulfinate

HDS:

Hydrodesulfurization

I:

Inhibitor concentration (μM of HBP)

K:

Kinetic constant (μM)

P:

Product (HBP) concentration (μM)

qS :

Specific substrate consume rate (mmol substrate·KgDC−1 h−1)

S:

Substrate concentration (μM)

X:

Biomass concentration (g DC L−1)

XBDS :

Biodesulfurization percentage (%)

y:

Fitting model parameter

i:

Intermediate

I:

Inhibition over main substrate

I′:

Inhibition over intermediate substrate

max:

Maximum

r:

Remove

S:

Substrate, saturation

References

  • Abbad-Andaloussi S, Lagnel C, Warzywoda M, Monot F (2003) Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enz Microbiol Technol 32(3–4):446–454

    Article  CAS  Google Scholar 

  • Alcon A, Santos VE, Martin AB, Yustos P, García-Ochoa F (2005) Biodesulfurisation of DBT with Pseudomonas putida CECT5279 by resting cells: influence of cell growth time on reducing equivalent concentration and HpaC activity. Biochem Eng J 26:168–175

    Article  CAS  Google Scholar 

  • Caro A, Boltes K, Letón P, Garcia-Calvo E (2007) Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem Eng J 35(2):191–197

    Article  CAS  Google Scholar 

  • Chang JH, Chang YK, Ryu HW, Chang HN (2000) Desulfurization of ligth gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS Microbiol Lett 182:309–312

    Article  CAS  Google Scholar 

  • Feng J, Zeng Y, Ma C, Cai X, Zhang Q, Tong M, Yu B, Xu P (2006) The surfactant Tween 80 enhances biodesulfurization. Appl Environ Microbiol 72(11):7390–7393

    Article  CAS  Google Scholar 

  • Gallagher JR, Olson ES, Stanley DC (1993) Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107:31–36

    Article  CAS  Google Scholar 

  • Gallardo ME, Ferrandez A, De Lorenzo V, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160

    CAS  Google Scholar 

  • Gray KA, Pogrebinsky OS, Mrachko T, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709

    Article  CAS  Google Scholar 

  • Guchhait S, Biswas D, Bhattacharya P, Chowdhury R (2005) Bio-desulfurization of model organo-sulfur compounds and hydrotreated diesel- Experiments and modelling. Chem Eng J 112:145–151

    Article  CAS  Google Scholar 

  • Guobin S, Huaiying Z, Jianmin X, Guo C, Wangliang L, Huizhou L (2006) Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture. Biochem Eng J 27(3):305–309

    Article  CAS  Google Scholar 

  • H del Olmo C, Alcon A, Santos VE, García-Ochoa F (2005a) Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of media composition. Enz Microbiol Technol 37:157–166

  • H del Olmo, C, E Santos, V, Alcon, A, García-Ochoa, F (2005b) Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochem Eng J 22:229–237

  • Honda H, Sugiyama H, Saito I, Kobayashi T (1998) High cell density culture of Rhodococcus rhodochrous by pH-stat feeding and dibenzothiophene degradation. J Ferment Bioeng 85(3):334–338

    Article  CAS  Google Scholar 

  • Jia X, Wen J Sun Z, Caiyin Q, Xie S (2006) Modelling of DBT biodegradation behaviors by resting cells of Gordonia sp. WQ-01 and its mutant in oil-water dispersions. Chem Eng Sci 61(6):1987–2000

    Article  CAS  Google Scholar 

  • Kilbane II JJ (2006) Microbial biocatalyst development to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314

    Google Scholar 

  • Kilbane JJ, Jackowski K (1992) Biodesulfurization of water soluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol Bioeng 40:1107–1114

    Article  CAS  Google Scholar 

  • Kobayashi M, Horiuchi K, Yoshikawa O, Hirasawa K, Ishii Y, Fujino K (2001) Kinetic analysis of microbial desulfurization of model and light gas oils containing multiple alkyl dibenzothiophenes. Biosci Biotechnol Biochem 65(2):298–304

    Article  CAS  Google Scholar 

  • Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M (1997) Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63(8):3164–3169

    CAS  Google Scholar 

  • Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169

    Article  CAS  Google Scholar 

  • Luo MF, Xing JM, Gou ZX, Li S, Liu HZ, Chen JY (2002) Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem Eng J 13(1):1–6

    Article  Google Scholar 

  • Maghsoudi S, Vossoughi M, Kheirolomoom A, Tanaka E, Katoh S (2001) Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1. Biochem Eng J 8:151–156

    Article  CAS  Google Scholar 

  • Martin AB, Alcón A, Santos VE, García-Ochoa F (2004) Production of a biocatalyst of Pseudomonas putida CECT5279 for Dibenzothiophene (DBT) Biodesulfurization for different media composition. Energy Fuels 18:851–857

    Article  CAS  Google Scholar 

  • McFarland BL (1999) Biodesulfurization. Curr Opin Microbiol 2:257–264

    Article  CAS  Google Scholar 

  • Monticello DJ (1998) Riding the fossil fuel biodesulfurization wave. Chemtec 28:38–45

    CAS  Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Microbiol 11:540–546

    CAS  Google Scholar 

  • Monticello DJ, Finnerty WR (1985) Microbial desulfurization of fossil fuels. Ann Rev Microbiol 39:371–389

    Article  CAS  Google Scholar 

  • Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63(1):1–9

    Article  CAS  Google Scholar 

  • Ohshiro T, Hine Y, Izumi Y (1994) Enzymatic desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118:341–344

    Article  CAS  Google Scholar 

  • Ohshiro T, Hirata T, Hashimoto I, Izumi Y (1996) Characterization of DBT desulfurization reaction by whole cells of Rhodococcus erythropolis H-2 in the presence of hydrocarbon. J Ferment Bioeng 82(6):610–612

    Article  CAS  Google Scholar 

  • Ohshiro T, Ishii Y, Matsubara T, Ueda K, Izumi Y, Kina K, Kirimura K (2005) DBT desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J Biosci Bioeng 100(3):266–273

    Article  CAS  Google Scholar 

  • Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiol 143:2961–2973

    Article  CAS  Google Scholar 

  • Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulfurisation of benzothiophene and dibenzothiophene by actinomicete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhock 74:119–132

    Article  CAS  Google Scholar 

  • Olson E, Stanley D, Gallagher J (1993) Characterization of intermediates in the microbial desulfurization of dibenzothiophene. Energy Fuels 7:159–164

    Article  CAS  Google Scholar 

  • Omori T, Monna L, Saiki Y, Kodama T (1992) Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY-1. Appl Environ Microbiol 58:911–915

    CAS  Google Scholar 

  • Rashtchi M, Mohebali GH, Akbarnejad MM, Towfighi J, Rasekh B, Keytash A (2006) Analysis of biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochem Eng J 29(3):169–173

    CAS  Google Scholar 

  • Takada M, Nomura N, Okada H, Nakajima-Kambe T, Nakahara T, Uchiyama H (2005) De-repression and comparison of oil watr seperation activity of the dibenzothiophene desulfurizing bacterium, Mycobacterium sp. G3. Biotechnol Lett 27:871–874

    Article  CAS  Google Scholar 

  • Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biphasic system containing organic solvents. Appl Environ Microbiol 72(7):4604–4609

    Article  CAS  Google Scholar 

  • Wang P, Humphrey AE, Krawiec S (1996) Kinetic analyses of desulfurization of dibenzothiophene by Rhodococcus erythropolis in continuous cultures. Appl Environ Microbiol 62(8):3066–3068

    CAS  Google Scholar 

  • Watkins LM, Rodriguez R, Schneider D, Broderick R, Cruz M, Chambers R, Ruckman E, Cody M, Mrachko GT (2003) Purification and characterization of the aromatic desulfinase, 2-(2′-hydroxyphenyl)benzenesulfinate desulfinase. Arch Biochem Biophys 415:14–23

    Article  CAS  Google Scholar 

  • Xu P, Yu B, Li FL, Cai XF, Ma CQ (2006) Microbial degradation of sulphur, nitrogen and oxygen heterocycles. Trends Microbiol 14(9):398–405

    Article  CAS  Google Scholar 

  • Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O (2000) Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J Biosci Bioeng 89(4):361–366

    Article  CAS  Google Scholar 

  • Yang J, Marison IW (2005) Two-stage process design for the biodesulphurisation of a model diesel by a newly isolated Rhodococcus globerulus DAQ3. Biochem Eng J 27:77–82

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by MEC-Plan Nacional de I + D-Programa de Ciencia y Tecnología Química, under contract no. CTQ2004-06553-C02-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Letón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caro, A., Boltes, K., Letón, P. et al. Description of by-product inhibiton effects on biodesulfurization of dibenzothiophene in biphasic media. Biodegradation 19, 599–611 (2008). https://doi.org/10.1007/s10532-007-9165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9165-z

Keywords

Navigation