Skip to main content
Log in

Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

In insects, acetylcholine (ACh) is the main neurotransmitter, and nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee, nAChRs are expressed in diverse structures including the primary olfactory centres of the brain, the antennal lobes (AL) and the mushroom bodies. Whole-cell, voltage-clamp recordings were used to characterize the nAChRs present on cultured AL cells from adult honeybee, Apis mellifera. In 90% of the cells, applications of ACh induced fast inward currents that desensitized slowly. The classical nicotinic agonists nicotine and imidacloprid elicited respectively 45 and 43% of the maximum ACh-induced currents. The ACh-elicited currents were blocked by nicotinic antagonists methyllycaconitine, dihydroxy-β-erythroidine and α-bungarotoxin. The nAChRs on adult AL cells are cation permeable channels. Our data indicate the existence of functional nAChRs on adult AL cells that differ from nAChRs on pupal Kenyon cells from mushroom bodies by their pharmacological profile and ionic permeability, suggesting that these receptors could be implicated in different functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DJ, Nutter TJ (1992) Calcium permeability and modulation of nicotinic acetylcholine receptor-channels in rat parasympathetic neurons. J Physiol Paris 86:67–76

    Article  PubMed  CAS  Google Scholar 

  • Albert JL, Lingle CJ (1993) Activation of nicotinic acetylcholine receptors on cultured Drosophila and other insect neurones. J Physiol 463:605–630

    PubMed  CAS  Google Scholar 

  • Bai D, Erdbrugger H, Breer H, Sattelle DB (1992) Acetylcholine receptors of thoracic dorsal midline neurones in the cockroach, Periplaneta americana. Arch Insect Biochem Physiol 21:289–301

    Article  CAS  Google Scholar 

  • Barbara GS, Zube C, Rybak J, Gauthier M, Grünewald B (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:823–836

    Article  PubMed  Google Scholar 

  • Belzunces LP, Toutant JP, Bounias M (1988) Acetylcholinesterase from Apis mellifera head. Evidence for amphiphilic and hydrophilic forms characterized by Triton X-114 phase separation. Biochem J 255:463–470

    PubMed  CAS  Google Scholar 

  • Benson JA (1992) Electrophysiological pharmacology of the nicotinic and muscarinic cholinergic responses of isolated neuronal somata from locust thoracic ganglia. J Exp Biol 170:203–233

    CAS  Google Scholar 

  • Bicker G (1996) Transmitter-induced calcium signalling in cultured neurons of the insect brain. J Neurosci Methods 69:33–41

    Article  PubMed  CAS  Google Scholar 

  • Bicker G (1999) Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Tech 45:174–183

    Article  Google Scholar 

  • Bicker G, Kreissl S (1994) Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. J Neurophysiol 71:808–810

    PubMed  CAS  Google Scholar 

  • Brown LA, Ihara M, Buckingham SD, Matsuda K, Sattelle DB (2006) Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J Neurochem 99:608–615

    Article  PubMed  CAS  Google Scholar 

  • Cayre M, Buckingham SD, Yagodin S, Sattelle DB (1999) Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine, and dopamine. J Neurophysiol 81:1–14

    PubMed  CAS  Google Scholar 

  • Courjaret R, Grolleau F, Lapied B (2003) Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an α-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur J Neurosci 17:2023–2034

    Article  PubMed  Google Scholar 

  • Dacher M, Lagarrigue A, Gauthier M (2005) Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 130:37–50

    Article  PubMed  CAS  Google Scholar 

  • David JA, Sattelle DB (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta americana). J Exp Biol 108:119–136

    CAS  Google Scholar 

  • David JA, Pitman RM (1993) The pharmacology of a-bungarotoxin-resistant acetylcholine receptors on an identified cockroach motoneurone. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 172:359–368

    Article  Google Scholar 

  • Davies CW (1962) Ion association. Butterworths, London

    Google Scholar 

  • Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16

    Article  PubMed  Google Scholar 

  • Devaud JM, Masson C (1999) Dendritic pattern development of the honeybee antennal lobe neurons: a laser scanning confocal microscopic study. J Neurobiol 39:461–474

    Article  PubMed  CAS  Google Scholar 

  • Devaud JM, Quenet B, Gascuel J, Masson C (1994) A morphometric classification of pupal honeybee antennal lobe neurones in culture. Neuroreport 6:214–218

    Article  PubMed  CAS  Google Scholar 

  • Dwoskin LP, Crooks PA (2001) Competitive neuronal nicotinic receptor antagonists: a new direction for drug discovery. J Pharmacol Exp Ther 298:395–402

    PubMed  CAS  Google Scholar 

  • Fickbohm D, Trimmer BA (2003) Antisense inhibition of neuronal nicotinic receptors in the tobacco-feeding insect, Manduca sexta. Arch Insect Biochem Physiol 53:172–185

    Article  PubMed  CAS  Google Scholar 

  • Flanagan D, Mercer AR (1989) Morphology and response characteristics of neurones in the deutocerebrum of the brain in the honeybee Apis mellifera. J Comp Physiol A 164:483–494

    Article  Google Scholar 

  • Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35:1–8

    Article  PubMed  CAS  Google Scholar 

  • Galzi JL, Bertrand S, Corringer PJ, Changeux JP, Bertrand D (1996) Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. Embo J 15:5824–5832

    PubMed  CAS  Google Scholar 

  • Gauthier M, Dacher M, Thany SH, Niggebrugge C, Déglise P, Kljucevic P, Armengaud C, Grünewald B (2006) Involvement of α-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem

  • Goldberg F, Grünewald B, Rosenboom H, Menzel R (1999) Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J Physiol 514(Pt 3):759–768

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS, Spitzer NC (1980) Embryonic development of neurotransmitter receptors in grasshoppers. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland Biochemical, Amsterdam, pp 195–207

    Google Scholar 

  • Gorczyca M, Hall JC (1984) Identification of a cholinergic synapse in the giant fiber pathway of Drosophila using conditional mutations of acetylcholine synthesis. J Neurogenet 1:289–313

    Article  PubMed  CAS  Google Scholar 

  • Green WN, Andersen OS (1991) Surface charges and ion channel function. Annu Rev Physiol 53:341–359

    Article  PubMed  CAS  Google Scholar 

  • Grünewald B (2003) Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway. J Exp Biol 206:117–129

    Article  PubMed  Google Scholar 

  • Grünewald B, Wersing A, Wustenberg DG (2004) Learning channels: cellular physiology of odor processing neurons within the honeybee brain. Acta Biol Hung 55:53–63

    Article  PubMed  Google Scholar 

  • Gu H, O’Dowd DK (2006) Cholinergic synaptic transmission in adult Drosophila Kenyon cells in situ. J Neurosci 26:265–272

    Article  PubMed  CAS  Google Scholar 

  • Gundelfinger ED (1992) How complex is the nicotinic receptor system of insects? Trends Neurosci 15:206–211

    Article  PubMed  CAS  Google Scholar 

  • Gundelfinger ED, Schulz R (2000) Insect nicotinic acetylcholine receptors: genes, structure, physiological and pharmacological properties. In: Clementi F, Fornasari D, Gotti C (eds) Handbook of experimental pharmacology, neuronal nicotinic receptors. Springer, Berlin, pp 496–521

    Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  • Harrow ID, Sattelle DB (1983) Acetylcholine receptors on the cell body membrane of giant interneurone 2 in the cockroach, Periplaneta americana. J Exp Biol 105:339–350

    CAS  Google Scholar 

  • Hermsen B, Stetzer E, Thees R, Heiermann R, Schrattenholz A, Ebbinghaus U, Kretschmer A, Methfessel C, Reinhardt S, Maelicke A (1998) Neuronal nicotinic receptors in the locust Locusta migratoria: cloning and expression. J Biol Chem 273:18394–18404

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:4–7

    Google Scholar 

  • Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209

    Article  PubMed  CAS  Google Scholar 

  • Homberg U, Hoskins SG, Hildebrand JG (1995) Distribution of acetylcholinesterase activity in the deutocerebrum of the sphinx moth Manduca sexta. Cell Tissue Res 279:249–259

    PubMed  CAS  Google Scholar 

  • Jackson C, Bermudez I, Beadle DJ (2002) Pharmacological properties of nicotinic acetylcholine receptors in isolated Locusta migratoria neurones. Microsc Res Tech 56:249–255

    Article  PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1976) L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J Physiol 262:215–236

    PubMed  CAS  Google Scholar 

  • Jepson JE, Brown LA, Sattelle DB (2006) The actions of the neonicotinoid imidacloprid on cholinergic neurons of Drosophila melanogaster. Invert Neurosci 6:33–40

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Raymond-Delpech V, Thany SH, Gauthier M, Sattelle DB (2006) The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res 16:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Kirschner S, Kleineidam CJ, Zube C, Rybak J, Grünewald B, Rossler W (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J Comp Neurol 499:933–952

    Article  PubMed  Google Scholar 

  • Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463

    PubMed  CAS  Google Scholar 

  • Kreissl S, Bicker G (1989) Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J Comp Neurol 286:71–84

    Article  PubMed  CAS  Google Scholar 

  • Kreissl S, Bicker G (1992) Dissociated neurons of the pupal honeybee brain in cell culture. J Neurocytol 21:545–556

    Article  PubMed  CAS  Google Scholar 

  • Lapied B, Le Corronc H, Hue B (1990) Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res 533:132–136

    Article  PubMed  CAS  Google Scholar 

  • Lecchi M, Marguerat A, Ionescu A, Pelizzone M, Renaud P, Sommerhalder J, Safran AB, Tribollet E, Bertrand D (2004) Ganglion cells from chick retina display multiple functional nAChR subtypes. Neuroreport 15:307–311

    Article  PubMed  CAS  Google Scholar 

  • Lozano VC, Bonnard E, Gauthier M, Richard D (1996) Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behav Brain Res 81:215–222

    Article  PubMed  CAS  Google Scholar 

  • Lozano VC, Armengaud C, Gauthier M (2001) Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol [A] 187:249–254

    Article  CAS  Google Scholar 

  • Matsuda K, Shimomura M, Kondo Y, Ihara M, Hashigami K, Yoshida N, Raymond V, Mongan NP, Freeman JC, Komai K, Sattelle DB (2000) Role of loop D of the α7 nicotinic acetylcholine receptor in its interaction with the insecticide imidacloprid and related neonicotinoids. Br J Pharmacol 130:981–986

    Article  PubMed  CAS  Google Scholar 

  • McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–546

    Article  PubMed  CAS  Google Scholar 

  • Millar NS (2003) Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem Soc Trans 31:869–874

    Article  PubMed  CAS  Google Scholar 

  • Nauen R, Ebbinghaus-Kintscher U, Schmuck R (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci 57:577–586

    Article  PubMed  CAS  Google Scholar 

  • Orr N, Shaffner AJ, Watson GB (1997) Pharmacological characterization of an epibatidine binding site in the nerve cord of Periplaneta americana. Pesticide Biochem Physiol 58:183–192

    Article  CAS  Google Scholar 

  • Osborne RH (1996) Insect neurotransmission: neurotransmitters and their receptors. Pharmacol Ther 69:117–142

    Article  PubMed  CAS  Google Scholar 

  • Pelz C, Jander J, Rosenboom H, Hammer M, Menzel R (1999) IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. J Neurophysiol 81:1749–1759

    PubMed  CAS  Google Scholar 

  • Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117

    PubMed  Google Scholar 

  • Salgado VL, Saar R (2004) Desensitizing and non-desensitizing subtypes of α-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J Insect Physiol 50:867–879

    Article  PubMed  CAS  Google Scholar 

  • Sands SB, Barish ME (1991) Calcium permeability of neuronal nicotinic acetylcholine receptor channels in PC12 cells. Brain Res 560:38–42

    Article  PubMed  CAS  Google Scholar 

  • Sands SB, Barish ME (1992) Neuronal nicotinic acetylcholine receptor currents in phaeochromocytoma (PC12) cells: dual mechanisms of rectification. J Physiol 447:467–487

    PubMed  CAS  Google Scholar 

  • Schafer S, Rosenboom H, Menzel R (1994) Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci 14:4600–4612

    PubMed  CAS  Google Scholar 

  • Scheidler A, Kaulen P, Bruning G, Erber J (1990) Quantitative autoradiographic localization of [125I] α-bungarotoxin binding sites in the honeybee brain. Brain Res 534:332–335

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Luer K, Hevers W, Technau GM (2000) Ionic currents of Drosophila embryonic neurons derived from selectively cultured CNS midline precursors. J Neurobiol 44:392–413

    Article  PubMed  CAS  Google Scholar 

  • Sharples CGV, Wonnacott S (2001) Neuronal nicotinic receptors. Tocris reviews, vol 19

  • Thany SH, Lenaers G, Crozatier M, Armengaud C, Gauthier M (2003) Identification and localization of the nicotinic acetylcholine receptor α3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol Biol 12:255–262

    Article  PubMed  CAS  Google Scholar 

  • Thany SH, Crozatier M, Raymond-Delpech V, Gauthier M, Lenaers G (2005) Apisα2, Apisα7–1 and Apisα7–2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene 344:125–132

    Article  PubMed  CAS  Google Scholar 

  • Thany SH, Lenaers G, Raymond-Delpech V, Sattelle DB, Lapied B (2007) Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 28:14–22

    Article  PubMed  CAS  Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 442:931

    Google Scholar 

  • Tomizawa M, Casida JE (2001) Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manag Sci 57:914–922

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364

    Article  PubMed  CAS  Google Scholar 

  • van den Beukel I, van Kleef RG, Oortgiesen M (1998) Differential effects of physostigmine and organophosphates on nicotinic receptors in neuronal cells of different species. Neurotoxicology 19:777–787

    PubMed  Google Scholar 

  • Van Eyseren I, Guillet JC, Le Guen J, Tiaho F, Pichon Y (1998) Effects of nicotinic and muscarinic ligands on embryonic neurones of Periplaneta americana in primary culture: a whole cell clamp study. J Insect Physiol 44:227–240

    Article  PubMed  Google Scholar 

  • Verbitsky M, Rothlin CV, Katz E, Elgoyhen AB (2000) Mixed nicotinic-muscarinic properties of the α9 nicotinic cholinergic receptor. Neuropharmacology 39:2515–2524

    Article  PubMed  CAS  Google Scholar 

  • Vermehren A, Qazi S, Trimmer BA (2001) The nicotinic α subunit MARA1 is necessary for cholinergic evoked calcium transients in Manduca neurons. Neurosci Lett 313:113–116

    Article  PubMed  CAS  Google Scholar 

  • Vermehren A, Trimmer BA (2005) Expression and function of two nicotinic subunits in insect neurons. J Neurobiol 62:289–298

    Article  PubMed  CAS  Google Scholar 

  • Weiss JN (1997) The Hill equation revisited: uses and misuses. Faseb J 11:835–841

    PubMed  CAS  Google Scholar 

  • Wustenberg DG, Grünewald B (2004) Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:807–821

    Article  PubMed  Google Scholar 

  • Yasuyama K, Meinertzhagen IA, Schurmann FW (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445:211–226

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank M. Moreau for help on ion permeability determination; M. Lambin, C. Armengaud, J. M. Devaud and J. C. Sandoz for suggestions on figures and manuscript; and M. Bazelot for kindly sharing cell cultures. G. S. Barbara was supported by a doctoral grant from the French Ministry of Scientific Research and Education. This work benefited from financial support of the European Community in the frame of the Apiculture Program 2007, Agreement 07–09 between Vinifhlor, CNRS and UPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Raymond-Delpech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbara, G.S., Grünewald, B., Paute, S. et al. Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invert Neurosci 8, 19–29 (2008). https://doi.org/10.1007/s10158-007-0062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-007-0062-2

Keywords

Navigation