Skip to main content

Advertisement

Log in

Tick neurobiology: recent advances and the post-genomic era

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Increasing worldwide resistance to acaricides necessitates greater research on the identification of potential acaricide targets in ticks to aid in the control of these serious pests of medical and veterinary importance. Historically, and most likely in the future, acaricide targets are largely of neural origin, but our knowledge of tick neurobiology is surprisingly limited. The tick central nervous system is a fused nerve mass, termed the synganglion. Tick synganglion material is relatively easily accessible to most researchers and employing modern amplification methods of complementary-DNA construction is readily amenable for gene cloning investigations. The various tick neurotransmitter systems are described with emphasis on our current knowledge of both existing and potential acaricide targets at the molecular level. We describe the impact of mass gene sequencing (expressed sequence tag and genome projects), advances in bioinformatics and RNA-interference on target identification and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aljamali MN, Bior AD, Sauer JR, Essenberg RC (2003) RNA interference in ticks: a study using histamine binding protein dsRNA in the female tick Amblyomma americanum. Insect Mol Biol 12:299–305

    Article  PubMed  CAS  Google Scholar 

  • Arena JP, Liu KK, Paress PS, Frazier EG, Cully DF, Mrozik H, Schsaeffer JM (1995) The mechanism of action of avermectins in Caenorhabditis elegans: correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. J Parasitol 81:286–294

    Article  PubMed  CAS  Google Scholar 

  • Atkinson PW, Binnington KC, Roulston WJ (1974) High monoamine oxidase activity in the tick Boophilus microplus and inhibition by chlordimeform and related pesticides. J Aust Entomol Soc 13:207–210

    Article  Google Scholar 

  • Baxter GD, Barker SC (1998) Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus: characterisation and role in organophosphate resistance. Insect Biochem Mol Biol 28:581–589

    Article  PubMed  CAS  Google Scholar 

  • Baxter GD, Barker SC (1999a) Comparison of acetylcholinesterase genes from cattle ticks. Int J Parasitol 29:1765–1774

    Article  PubMed  CAS  Google Scholar 

  • Baxter GD, Barker SC (1999b) Isolation of a cDNA for an octopamine-like, G-protein coupled receptor from the cattle tick, Boophilus microplus. Insect Biochem Mol Biol 29:461–467

    Article  PubMed  CAS  Google Scholar 

  • Baxter GD, Barker SC (2002) Analysis of the sequence and expression of a second putative acetylcholinesterase cDNA from organophosphate-susceptible and organophosphate-resistant cattle ticks. Insect Biochem Mol Biol 32:815–820

    Article  PubMed  CAS  Google Scholar 

  • Barker SC, Murrell A (2004) Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129:S15–S36

    Article  PubMed  Google Scholar 

  • Binnington KC, Lane NJ (1980) Perineurial and glial-cells in the tick Boophilus microplus (Acarina, Ixodidae)—freeze-fracture and tracer studies. J Neurocytol 9:343–362

    Article  PubMed  CAS  Google Scholar 

  • Binnington KC, Stone BF (1977) Distribution of catecholamines in cattle tick Boophilus microplus. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 58:21–28

    CAS  Google Scholar 

  • Binnington KC, Obenchain FD (1982) Structure and function of the circulatory, nervous, and neuroendocrine system of ticks. In: Obenchain FD, Galun R (eds) Physiology of ticks, Pergamon Press, Oxford, pp 351–398

    Google Scholar 

  • Binnington KC, Rice MJ (1982) A technique for recording efferent neurone activity from normal and poisoned cattle ticks [Boophilus microplus (Canestrini)]. J Aust Entomol Soc 21:161–166

    Article  CAS  Google Scholar 

  • Binnington KC (1986) Ultrastructure of the tick neuroendocrine system. In: Sauer JR, Hair JA (eds) Morphology, physiology and behavioural biology of ticks. Ellis Horwood, Chichester, pp 152–164

    Google Scholar 

  • Booth TF (1989) Effects of biogenic-amines and adrenergic drugs on oviposition in the cattle tick Boophilus—evidence for octopaminergic innervation of the oviduct. Exp Appl Acarol 7:259–266

    Article  PubMed  CAS  Google Scholar 

  • Booth TF, Beadle DJ, Hart FJ (1985) An ultrastructural and physiological investigation of the retractor muscles of Gene’s organ in the cattle ticks Boophilus microplus and Amblyomma variegatum. Exp Appl Acarol 1:165–177

    Article  Google Scholar 

  • Bowman AS, Nuttall PA (2008) Ticks: biology, diseases and control. Cambridge University Press, Cambridge

    Google Scholar 

  • Bowman AS, Sauer JR (2004) Tick salivary glands: function, physiology and future. Parasitology 129:S67–S81

    Article  PubMed  Google Scholar 

  • Carson KA, Sonenshine DS, Boland LM, Taylor D (1987) Ultrastructural-localization of acetylcholinesterase in the synganglion of the tick, Dermacentor variabilis (Say). Cell Tissue Res 249:615–623

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Holmes SP, Pietrantonio PV (2004) Molecular cloning and functional expression of a serotonin receptor from the Southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect Mol Biol 13:45–54

    Article  PubMed  Google Scholar 

  • Chen A, He H, Davey RB (2007) Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Vet Parasitol 148:379–383

    Article  PubMed  CAS  Google Scholar 

  • Coons LB, Roshdy MA, Axtell RC (1974) Fine-structure of central nervous-system of Dermacentor variabilis (Say), Amblyomma americanum (L), and Argas aboreus Kaiser, Hoogstraal, and Kohls (Ixodoidea). J Parasitol 60:687–698

    Article  PubMed  CAS  Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Vanderploeg LHT, Schaeffer JM, Arena JP (1994) Cloning of an avermectin sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711

    Article  PubMed  CAS  Google Scholar 

  • Davey RB, George JE, Snyder DE (2001) Efficacy of a single whole-body spray treatment of spinosad, against Boophilus microplus (Acari: Ixodidae) on cattle. Vet Parasitol 99:41–52

    Article  PubMed  CAS  Google Scholar 

  • Davis HH, Dotson EM, Oliver JH (1994) Localization of insulin-like immunoreactivity in the synganglion of nymphal and adult Dermacentor variabilis (Acari, Ixodidae). Exp Appl Acarol 18:111–122

    Article  PubMed  CAS  Google Scholar 

  • Denny DJB (2001) Efficacy of fipronil against ticks. Vet Rec 148:124–124

    PubMed  CAS  Google Scholar 

  • George JE, Pound JM, Davey RB (2004) Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology 129:S353–S366

    Article  PubMed  CAS  Google Scholar 

  • Graf JF, Gogolewski R, Leach-Bing N, Sabatini GA, Molento MB, Bordin EL, Arantes GJ (2004) Tick control: an industry point of view. Parasitology 129:S427–S442

    Article  PubMed  Google Scholar 

  • Gration KAF, Harrow ID, Martin RJ (1986) GABA receptors in parasites of veterinary importance. In: Ford MG, Lunt GG, Reay RC, Usherwood PNR (eds) Neuropharmacology and pesticide action. Ellis Horwood, Chichester, pp 414–422

    Google Scholar 

  • Grbic M, Khila A, Lee KZ, Bjelica A, Grbic V, Whistlecraft J, Verdon L, Navajas M, Nagy L (2007) Mity model: Tetranychus urticae, a candidate for chelicerate model organism. Bioessays 29:489–496

    Article  PubMed  CAS  Google Scholar 

  • Guerrero FD, Nene VM, George JE, Barker SC, Willadsen P (2006) Sequencing a new target genome: the Boophilus microplus (Acari: Ixodidae) genome project. J Med Entomol 43:9–16

    Article  PubMed  CAS  Google Scholar 

  • Harrow ID, Gration KAF, Evans NA (1991) Neurobiology of arthropod parasites. Parasitology 102:S59–S69

    PubMed  Google Scholar 

  • He H, Chen AC, Davey RB, Ivie GW, George JE (1999) Identification of a point mutation in the para-type sodium channel gene from a pyrethroid-resistant cattle tick. Biochem Biophys Res Comms 261:558–561

    Article  CAS  Google Scholar 

  • Hernandez R, He H, Chen AC, Ivie GW, George JE, Wagner GG (1999) Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilus microplus (Acari: Ixodidae). J Med Entomol 36:764–770

    PubMed  CAS  Google Scholar 

  • Holmes SP, He H, Chen AC, Ivie GW, Pietrantonio PV (2000) Cloning and transcriptional expression of a leucokinin-like peptide receptor from the Southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect Mol Biol 9:457–465

    Article  PubMed  CAS  Google Scholar 

  • Holmes SP, Barhoumi R, Nachman RJ, Pietrantonio PV (2003) Functional analysis of a G protein-coupled receptor from the Southern cattle tick Boophilus microplus (Acari: Ixodidae) identifies it as the first arthropod myokinin receptor. Insect Mol Biol 12:27–38

    Article  PubMed  CAS  Google Scholar 

  • Jongelan F, Nene V, de la Fuente J, Pain A, Willadsen P (2007) Advances in the genomics of ticks and tick-borne pathogens. Trends Parasitol 23:391–396

    Article  CAS  Google Scholar 

  • Jonsson NN, Hope M (2007) Progress in the epidemiology and diagnosis of amitraz resistance in the cattle tick Boophilus microplus. Vet Parasitol 146:193–198

    Article  PubMed  CAS  Google Scholar 

  • Karim S, Ramakrishnan VG, Tucker JS, Essenberg RC, Sauer JR (2004) Amblyomma americanum salivary glands: double-stranded RNA-mediated gene silencing of synaptobrevin homologue and inhibition of PGE2 stimulated protein secretion. Insect Biochem Mol Biol 34:407–413

    Article  PubMed  CAS  Google Scholar 

  • Kaufman WR (1978) Actions of some transmitters and their antagonists on salivary secretion in a tick. Am J Physiol 235:R76–R81

    PubMed  CAS  Google Scholar 

  • Kaufman R, Sloley D (1996) Catabolism of dopamine and 5-hydroxytryptamine by monoamine oxidase in the ixodid tick, Amblyomma hebraeum. Insect Biochem Mol Biol 26:101–109

    Article  PubMed  CAS  Google Scholar 

  • Kaufman WR, Sloley BD, Tatchell RJ, Zbitnew GL, Diefenbach TJ, Goldberg JI (1999) Quantification and cellular localization of dopamine in the salivary gland of the ixodid tick Amblyomma hebraeum. Exp Appl Acarol 23:251–265

    Article  CAS  Google Scholar 

  • Kempton LRC, Willis RJ, Pillmoor JB, Isaac RE (1990) Tyramine-B-hydroxylase activity in the synganglion of the tick Boophilus microplus (Acari: Ixodidae). In: Borkovec AB, Masler EP (eds) Insect neurochemistry and neurophysiology. The Humana Press, New Jersey, pp 281–284

    Google Scholar 

  • Kempton LRC, Isaac RE, Pillmoor JB, Willis RJ (1992) Octopamine N-acetyltransferase activity from the cattle tick, Boophilus microplus. Insect Biochem Mol Biol 22:777–783

    Article  CAS  Google Scholar 

  • Liang JG, Zhang J, Lai R, Rees HH (2005) An opioid peptide from synganglia of the tick, Amblyomma testindinarium. Peptides 26:603–606

    Article  PubMed  CAS  Google Scholar 

  • Lucien J, Reiffenstein R, Zbitnew G, Kaufman WR (1995) Gamma-butyric acid (GABA) and other amino acids in tissues of the tick, Amblyomma hebraeum (Acari: Ixodidae) throughout feeding and reproductive periods. Exp Appl Acarol 19:617–631

    Article  CAS  Google Scholar 

  • Lummis SCR, Sattelle DB (1985) Binding of N-[Propionyl-H-3]propionylated alpha-bungarotoxin and L-[Benzilic-4,4′-H-3] Quinuclidinyl Benzilate to CNS extracts of the cockroach Periplaneta americana. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 80:75–83

    CAS  Google Scholar 

  • Marzouk A, Abdel Moez MK, Darwish ZEA (1987) The effect of feeding and mating on the neurosecretory activity in female Hyalomma dromedarii synganglion (Acari: Ixodoidea: Ixodidae). J Egypt Soc Parasitol 17:547–570

    PubMed  CAS  Google Scholar 

  • Marzouk AS, Mohamed FSA, Omar NR (2001) Fine structure of the synganglion of unfed female Rhipicephalus (Rhipicephalus) sanguineus (Latrielle) (Ixodoidea: Ixodidae). J Egypt Soc Parasitol 31:1–12

    PubMed  CAS  Google Scholar 

  • Mcswain JL, Essenberg RC, Sauer JR (1992) Oral secretion elicited by effectors of signal transduction pathways in the salivary glands of Amblyomma americanum (Acari, Ixodidae). J Med Entomol 29:41–48

    PubMed  CAS  Google Scholar 

  • Megaw MW, Roberton HA (1974) Dopamine and noradrenaline in the salivary glands and brain of the tick, Boophilus microplus: effect of reserpine. Experientia 30:1261–1262

    Article  PubMed  CAS  Google Scholar 

  • Meinke PT (2001) Perspectives in animal health: old targets and new opportunities. J Med Chem 44:641–659

    Article  PubMed  CAS  Google Scholar 

  • Millar NS, Denholm I (2007) Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invert Neurosci 7:53–66

    Article  PubMed  CAS  Google Scholar 

  • Morton DB (1984) Pharmacology of the octopamine-stimulated adenylate-cyclase of the locust and tick CNS. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 78:153–158

    Article  CAS  Google Scholar 

  • Nathanson JA (1985) Characterisation of octopamine-sensitive adenylate cyclase: elucidation of a class of potent and selective octopamine-2 receptor agonists with toxic effects in insects. Proc Natl Acad Sci USA 82:599–603

    Article  PubMed  CAS  Google Scholar 

  • Nauen R, Ebbinghaus U, Tietjen K (1999) Ligands of the nicotinic acetylcholine receptor as insecticides. Pestic Sci 55:608–610

    Article  CAS  Google Scholar 

  • Neupert S, Predel R, Russell WK, Davies R, Pietrantonio PV, Nachman RJ (2005) Identification of tick periviscerokinin, the first neurohormone of Ixodidae: single cell analysis by means of MALDI-TOF. Biochem Biophys Res Commun 338:1860–1864

    Article  PubMed  CAS  Google Scholar 

  • Nijhof AM, Taoufik A, de la Fuente J, Kocan KM, de Vries E, Jongejan F (2007) Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference. Int J Parasitol 37:653–662

    Article  PubMed  CAS  Google Scholar 

  • Obenchain FD, Oliver JH (1975) Neurosecretory-system of American dog tick, Dermacentor variabilis (Acari-Ixodidae). 2. Distribution of secretory cell-types, axonal pathways and putative neurohemal–neuroendocrine associations—comparative histological and anatomical implications. J Morphol 145:269–293

    Article  PubMed  CAS  Google Scholar 

  • Orchard I (1982) Octopamine in insects— neurotransmitter, neurohormone, and neuromodulator. Can J Zool 60:659–669

    Article  CAS  Google Scholar 

  • Pagel Van Zee J, Geraci NS, Guerrero FD, Wikel SK, Stuart JJ, Nene VM, Hill CA (2007) Tick genomics: The Ixodes genome project and beyond. Int J Parasitol 37:1297–1305

    Article  CAS  Google Scholar 

  • Paine SH, Kemp DH, Allen JR (1983) In vitro feeding of Dermacentor andersoni (Stiles)—effects of histamine and other mediators. Parasitology 86:419–428

    Article  PubMed  CAS  Google Scholar 

  • Pound JM, Oliver JH (1982) Synganglial and neurosecretory morphology of female Ornithodoros parkeri (Cooley) (Acari, Argasidae). J Morphol 173:159–177

    Article  Google Scholar 

  • Pruett JH, Pound JM (2006) Biochemical diagnosis of organophosphate-insensitivity with neural acetylcholinesterase extracted by sonication from the adult tick synganglion. Vet Parasitol 135:355–363

    Article  PubMed  CAS  Google Scholar 

  • Prullage JB, Pound JM, Meola SM (1992) Synganglion morphology and neurosecretory centres of adult Amblyomma americanum (L.) (Acari: Ixodidae). J Med Entomol 29:1023–1034

    PubMed  CAS  Google Scholar 

  • Roeder T (1995) Pharmacology of the octopamine receptor from locust central nervous tissue (Oar3). Br J Pharmacol 114:210–216

    PubMed  CAS  Google Scholar 

  • Roshdy MA, Marzouk AS (1984) The subgenus Persicargas (Ixodoidea, Argasidae, Argas)—A(p) arboreus central nervous system anatomy and histology. J Parasitol 70:774–787

    Article  PubMed  CAS  Google Scholar 

  • Roulston WJ, Schuntner CA, Schnitzerling HJ (1966) Metabolism of coumaphos in larvae of the cattle tick Boophilus microplus. Aust J Biol Sci 19:619–633

    PubMed  CAS  Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–102

    Article  CAS  Google Scholar 

  • Sauer JR, Mcswain JL, Bowman AS, Essenberg RC (1995) Tick salivary-gland physiology. Annu Rev Entomol 40:245–267

    Article  PubMed  CAS  Google Scholar 

  • Sauer JR, Essenberg RC, Bowman AS (2000) Salivary glands in ixodid ticks: control and mechanism of secretion. J Insect Physiol 46:1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Smallman BN, Schuntner CA (1972) Authentication of the cholinergic system in the cattle tick Boophilus microplus. Insect Biochem 2:67–77

    Article  CAS  Google Scholar 

  • Smallman BN, Riddles PW (1977) Choline transferase in organophosphate-resistant and susceptible strains of the cattle tick Boophilus microplus. Pestic Biochem Physiol 7:355–359

    Article  CAS  Google Scholar 

  • Sonenshine DE (1991) Biology of ticks, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Stone BF (1968) Brain cholinesterase activity and its inheritance in cattle tick (Boophilus microplus) strains resistant and susceptible to organophosphorus acaricides. Aust J of Biol Sci 21:321–330

    CAS  Google Scholar 

  • Stone BF, Binnington KC, Neish AL (1978) Norepinephrine as principal catecholamine in a specific neuron of an invertebrate (Boophilus microplus-Acarina). Experientia 34:1173–1174

    Article  PubMed  CAS  Google Scholar 

  • Szlendak E, Oliver JH (1992) Anatomy of synganglia, including their neurosecretory regions, in unfed, virgin female Ixodes scapularis Say (Acari, Ixodidae). J Morphol 213:349–364

    Article  PubMed  CAS  Google Scholar 

  • Taneja-Bageshwar S, Strey A, Zubrzak P, Pietrantonio PV, Nachman RJ (2006) Comparative structure-activity analysis of insect kinin core analogs on recombinant kinin receptors from southern cattle tick Boophilus microplus (Acari: Ixodidae) and mosquito Aedes aegypti (Diptera: Culicidae). Arch Insect Biochem Physiol 62:128–140

    Article  PubMed  CAS  Google Scholar 

  • Taylor MA (2001) Recent developments in ectoparasiticides. Vet J 161:253–268

    Article  PubMed  CAS  Google Scholar 

  • Temeyer KB, Davey RB, Chen AC (2004) Identification of a third Boophilus microplus (Acari: Ixodidae) cDNA presumptively encoding an acetylcholinesterase. J Med Entomol 41:259–268

    Article  PubMed  CAS  Google Scholar 

  • Temeyer KB, Pruett JH, Untalan PM, Chen AC (2006) Baculovirus expression of the BmAChE3, a cDNA encoding an acetylcholinesterase of Boophilus microplus (Acari: Ixodidae). J Med Entomol 43:707–712

    Article  PubMed  CAS  Google Scholar 

  • Turberg A, Schroder I, Wegener S, Londershausen M (1996) Presence of muscarinic acetylcholine receptors in the cattle tick Boophilus microplus and in epithelial tissue culture cells of Chironomus tentans. Pestic Sci 48:389–398

    Article  CAS  Google Scholar 

  • Weinstock GM et al. Honeybee Genome Sequencing Consort (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  CAS  Google Scholar 

  • Witz P, Amlaiky N, Plassat JL, Maroteaux L, Borrelli E, Hen R (1990) Cloning and characterization of a Drosophila serotonin receptor that activates adenylate-cyclase. Proc Natl Acad Sci USA 87:8940–8944

    Article  PubMed  CAS  Google Scholar 

  • Wong DLP, Kaufman WR (1981) Potentiation by spiperone and other butyrophenones of fluid secretion by isolated salivary glands of Ixodid ticks. Eur J Pharmacol 73:163–173

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Quentin QF, Keirans JE, Durden LA (2003) Cloning and sequencing of putative acetylcholinesterase cDNAs from the American Dog Tick, Dermacentor variabilis, and the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae). J Med Entomol 40:890–896

    PubMed  CAS  Google Scholar 

  • Zheng Y, Priest B, Cully DF, Ludmerer SW (2003) Rdl(Dv), a novel GABA-gated chloride channel gene from the American dog tick Dermacentor variabilis. Insect Biochem Mol Biol 33:595–599

    PubMed  CAS  Google Scholar 

  • Zhu XX, Oliver JH (1991) Immunocytochemical localization of an insulin-like substance in the synganglion of the tick Ornithodoros parkeri (Acari, Argasidae). Exp Appl Acarol 13:153–159

    Article  PubMed  CAS  Google Scholar 

  • Zhu XX, Oliver JH (2001) Cockroach allatostatin-like immunoreactivity in the synganglion of the American dog tick Dermacentor variabilis (Acari: Ixodidae). Exp Appl Acarol 25:1005–1013

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the late Dr. Ken Gration who instigated our interest in tick neurobiology. This work was funded by a Biotechnology and Biological Sciences Research Council Industrial CASE studentship (to KL) with Pfizer Animal Health, Kent, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Bowman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lees, K., Bowman, A.S. Tick neurobiology: recent advances and the post-genomic era. Invert Neurosci 7, 183–198 (2007). https://doi.org/10.1007/s10158-007-0060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-007-0060-4

Keywords

Navigation