Skip to main content
Log in

The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Nematode cys-loop ligand gated ion channels (CLGIC) mediate neurotransmission and are important targets for anthelmintics in parasitic nematodes. The CLGIC superfamily in nematodes includes ion channels gated by acetylcholine, γ-amino butyric acid (GABA), glutamate, glycine and 5-HT. The macrocyclic lactones and the nicotinic agonists are important groups of anthelmintics that target the glutamate gated chloride channels and the nicotinic acetylcholine receptors, respectively. The model organism Caenorhabditis elegans has the most diverse families of cys-loop LGIC known in any organism. Many parasitic nematodes have homologues of C. elegans receptors but to date no genome wide investigations have been done. The genome sequencing projects of Brugia malayi (clade III) and Trichinella spiralis (clade I) have allowed us to characterise the CLGIC families in these species. Although the main groups of CLGICs targeted by anthelmintics are represented in both the nematode genomes investigated here, the CLGIC family is much smaller in B. malayi and T. spiralis, suggesting that care must be taken when using C. elegans as a model organism for distantly related nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arena JP, Liu KK, Paress PS, Cully DF (1992) Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Mol Brain Res 15:339–348

    Article  PubMed  CAS  Google Scholar 

  • Beg AA, Jorgensen EM (2003) EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci 6:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Blaxter M (1998) Caenorhabditis elegans is a nematode. Science 282:2041–2046

    Article  PubMed  CAS  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstrate A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  PubMed  CAS  Google Scholar 

  • Brown LA, Jones AK, Buckingham SD, Mee CJ, Sattelle DB (2006) Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study. Int J Parasitol 36:617–624

    Article  PubMed  CAS  Google Scholar 

  • Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD, Lewis JA, Sattelle DB (2004) The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J Biol Chem 279:42476–42483

    Article  PubMed  CAS  Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress P, Van der Ploeg LHT, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711

    Article  PubMed  CAS  Google Scholar 

  • Dent JA, Davis MW, Avery L (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J 16:5867–5879

    Article  PubMed  CAS  Google Scholar 

  • Dent JA, Smith MM, Vassilatis DK, Avery L (2000) The genetics of ivermectin resistance in Caenorhabditis elegans. Proc Natl Acad Sci USA 97:2674–2679

    Article  PubMed  CAS  Google Scholar 

  • Dorris M, De Ley P, Blaxter ML (1999) Molecular analysis of nematode diversity and the evolution of parasitism. Parasitol Today 15:188–193

    Article  PubMed  CAS  Google Scholar 

  • Fleming JT, Squire MD, Barnes TM, Tornoe CT, Matsuda K, Sulston JE, Barnard EA, Sattelle DB, Lewis JT (1997) Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci 17:5843–5857

    PubMed  CAS  Google Scholar 

  • Forrester SG, Prichard RK, Beech RN (2002) A glutamate-gated chloride channel subunit from Haemonchus contortus: Expression in a mammalian cell line, ligand binding, and modulation of anthelmintic binding by glutamate. Biochem Pharmacol 63:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Forrester SG, Prichard RK, Dent JA, Beech RN (2003) Haemonchus contortus: HcGluCla expressed in Xenopus oocytes forms a glutamate-gated ion channel that is activated by ibotenate and the antiparasitic drug ivermectin. Mol Biochem Parasitol 129:115–121

    Article  PubMed  CAS  Google Scholar 

  • Francis MM, Evans SP, Jensen M, Madsen DM, Mancuso J, Norman KR, Maricq AV (2005) The Ror receptor tyrosine kinase CAM-1 is required for ACR-16 mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron 46:581–594

    Article  PubMed  CAS  Google Scholar 

  • Ghedin E, Wang S., Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CKS, Crawford MJ, Daub J, Dimmic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li B-W, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DMA, McCarter JP, McReynolds L, Mitreva M, Nutman TB, Parkinson J, Peregrin-Alvarez JM, Poole C, Ren Q, Saunders L, Sluder AE, Smith K, Stanke M, Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Williams SA, Fraser-Liggett C, Slatko B, Blaxter ML, Scott AL (2007) Draft genome of the filarial nematode Parasite Brugia malayi. Science 317:1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk A, Almedom RB, Schedletzky T, Anderson SD, Yates JR, Schafer WR (2005) Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. EMBO J 24:2566–2578

    Article  PubMed  CAS  Google Scholar 

  • Guest M, Bull K, Walker R J, Amliwala K, O’Connor V, Harder A, Holden-Dye L, Hopper NA (2007) The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. Int J Parasitol (in press)

  • Harder A, Holden-Dye L, Walker R J, Wunderlich F (2005) Mechanisms of action of emodepside. Parasitol Res 97:S1–S10

    Article  PubMed  Google Scholar 

  • Holden-Dye L, Walker RJ (1990) Avermectin and avermectin derivatives are antagonists at the 4-aminobutyric acid (GABA) receptor on the somatic muscle cells of Ascaris; is this the site of anthelmintic action? Parasitology 101:265–271

    Article  PubMed  CAS  Google Scholar 

  • Horoszok L, Raymond V, Sattelle DB, Wolstenholme AJ (2001) GLC-3: a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Br J Pharmacol 132:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Jagannathan S, Laughton DL, Critten CL, Skinner TM, Horoszok L, Wolstenholme AJ (1999) Ligand-gated chloride channel subunits encoded by the Haemonchus contortus and Ascaris suum orthologues of the Caenorhabditis elegans gbr-2 (avr-14) gene. Mol Biochem Parasitol 103:129–140

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26:39–49

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Davis P, Hodgkin J, Sattelle DB (2007) The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature. Invert Neurosci 7:129–131

    Article  PubMed  CAS  Google Scholar 

  • Kwa MSG, Veenstra JG, Roos MH (1994) Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation in beta-tubulin isotype 1. Mol Biochem Parasitol 63:299–303

    Article  PubMed  CAS  Google Scholar 

  • Kwa MSG, Veenstra JG, van Dujk M, Roos MH (1995) Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. J Mol Biol 246:500–510

    Article  PubMed  CAS  Google Scholar 

  • Laughton DL, Lunt GG, Wolstenholme AJ (1997) Alternative splicing of a Caenorhabditis elegans gene produces two novel inhibitory amino acid receptor subunits with identical ligand binding domains but different ion channels. Gene 201:119–125

    Article  PubMed  CAS  Google Scholar 

  • Lewis JA, Wu CH, Berg H, Levine JH (1980) The genetics of levamisole resistance in Caenorhabditis elegans. Genetics 95:905–928

    PubMed  CAS  Google Scholar 

  • Lewis JA, Elmer JS, Skimming J, McLafferty S, Fleming JT, McGee T (1987) Cholinergic receptor mutants of the nematode Caenorhabditis elegans. J Neurosci 7:3059–3071

    PubMed  CAS  Google Scholar 

  • Lubega GW, Prichard RK (1990) Specific interaction of benzimidazole anthelmintics with tubulin - high-affinity binding and benzimidazole resistance in Haemonchus contortus. Mol Biochem Parasitol 38:221–232

    Article  PubMed  CAS  Google Scholar 

  • Lubega GW, Prichard RK (1991) Interaction of benzimidazole anthelmintics with Haemonchus contortu: tubulin - binding-affinity and anthelmintic efficacy. Exp Parasitol 73:203–213

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ (1982) Electrophysiological effects of piperazine and diethylcarbamazine on Ascaris suum somatic muscle. Br J Pharmacol 77:255–265

    PubMed  CAS  Google Scholar 

  • Martin RJ, Robertson AP (2007) Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology 134:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ, Robertson AP, Bjorn H (1997) Target sites of anthelmintics. Parasitology 114:S111–S124

    PubMed  Google Scholar 

  • Martin RJ, Murray I, Robertson AP, Bjorn H, Sangster N (1998) Anthelmintics and ion-channels: after a puncture, use a patch. Int J Parasitol 28:849–862

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ, Verma S, Levandowski M, Clark CL, Qian H, Stewart MT, Robertson AP (2005) Drug resistance and neurotransmitter receptors of nematodes: recent studies on the mode of action of levamisole. Parasitology 131:S71–S84

    Article  PubMed  CAS  Google Scholar 

  • Mitreva M, Blaxter ML, Bird DM, McCarter JP (2005) Comparative genomics of nematodes. Trends Genet 21:573–581

    Article  PubMed  CAS  Google Scholar 

  • Mongan N P, Baylis HA, Adcock C, Smith GR, Sansom MS, Sattelle DB (1998) An extensive and diverse gene family of nicotinic acetylcholine receptor alpha subunits in Caenorhabditis elegans. Receptors Channels 6:213–228

    PubMed  CAS  Google Scholar 

  • Nadler SN, Carreno RA, Mejia-Madrid H, Ullberg J, Pagan C, Houston R, Hugot J-P (2007) Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology 134:1421–1442

    Article  PubMed  CAS  Google Scholar 

  • Osei-Atweneboano MY, Eng JKL, Boakye DA, Gyapong JO, Prichard RK (2007) Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369:2021–2029

    Article  Google Scholar 

  • Putrenko I, Zakikhani M, Dent JA (2005) A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans. J Biol Chem 280:6392–6398

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan R, Cannon SC, Horvitz HR (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408:470–475

    Article  PubMed  CAS  Google Scholar 

  • Raymond V, Mongan NP, Sattelle DB (2000) Anthelmintic actions on homomer-forming nicotinic acetylcholine receptor subunits: chicken alpha7 and ACR-16 from the nematode Caenorhabditis elegans. Neuroscience 101:785–791

    Article  PubMed  CAS  Google Scholar 

  • Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nature Neurosci 2:791–797

    Article  PubMed  CAS  Google Scholar 

  • Robertson AP, Clark CL, Burns TA, Thompson DP, Geary TG, Trailovic SM, Martin RJ (2002) Paraherquamide and 2-deoxy-paraherquamide distinguish cholinergic receptor subtypes in Ascaris muscle. J Pharmacol Exp Ther 302:853–860

    Article  PubMed  CAS  Google Scholar 

  • Stear MJ, Doligalska M, Donskow-Schmelter K (2007) Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology 134:139–151

    Article  PubMed  CAS  Google Scholar 

  • Thylefors B, Alleman M (2006) Towards the elimination of onchocerciasis. Ann Trop Med Parasitol 100:733–746

    Article  PubMed  CAS  Google Scholar 

  • Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM, Richmond JE (2005) acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280:27013–27021

    Article  PubMed  CAS  Google Scholar 

  • Towers PR, Edwards B, Richmond JE, Sattelle DB (2005) The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J Neurochem 93:1–9

    Article  PubMed  CAS  Google Scholar 

  • Treinin M, Chalfie M (1995) A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron 14:871–877

    Article  PubMed  CAS  Google Scholar 

  • Treinin M, Gillo B, Liebman L, Chalfie M (1998) Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc Natl Acad Sci USA 95:15492–15495

    Article  PubMed  CAS  Google Scholar 

  • van Nierop P, Bertrand S, Munno DW, Gouwenberg Y, van Minnen J, Spafford JD, Syed NI, Bertrand D, Smit AB (2006) Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis. J Biol Chem 281:1680–1691

    Article  PubMed  CAS  Google Scholar 

  • Vassilatis DK, Arena JP, Plasterk RHA, Wilkinson H, Schaeffer JM, Cully DF, Van der Ploeg LHT (1997) Genetic and biochemical evidence for a novel avermectin sensitive chloride channel in C. elegans isolation and characterization. J Biol Chem 272:33167–33174

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme AJ, Rogers AT (2005) Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 131:S85–S95

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme AJ, Fairweather I, Prichard RK, von Samson-Himmelstjerna G, Sangster N (2004) Drug resistance in veterinary helminths. Trends Parasitol 20:469–476

    Article  PubMed  CAS  Google Scholar 

  • Yates DM, Wolstenholme AJ (2004) An ivermectin-sensitive glutamate-gated chloride channel subunit from Dirofilaria immitis. Int J Parasitol 34:1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Yates DM, Portillo V, Wolstenholme AJ (2003) The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol 33:1183–1193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The T. spiralis sequence data were produced by the Genome Sequencing Center at Washington University School of Medicine in St Louis and can be obtained from http://genome.wustl.edu. Funding for the sequence characterization of the Trichinella genome is being provided by the National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH). Funding for research in the Bath laboratory was provided by BBSRC. SMW is in receipt of a BBSRC CASE award with Pfizer Animal Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian J. Wolstenholme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, S.M., Walsh, T.K. & Wolstenholme, A.J. The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans . Invert Neurosci 7, 219–226 (2007). https://doi.org/10.1007/s10158-007-0056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-007-0056-0

Keywords

Navigation