Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression of a pathogen-response program in peripheral blood cells defines a subgroup of Rheumatoid Arthritis patients

Abstract

Rheumatoid arthritis (RA) is a heterogeneous disease with unknown etiology. Here we aimed to distinguish RA subtypes based on peripheral blood (PB) gene expression profiles in comparison with a pathogen-response transcriptional program. PB was obtained from 35 RA patients and 15 healthy individuals. For expression profiling we used DNA microarrays. A combined cluster analysis of RA and control samples together with samples from a viral infection model revealed that the gene expression profile of a subgroup of RA patients (RAA) was reminiscent to that of poxvirus-infected macaques. Statistical analysis, followed by Gene Ontology analysis of the RAA patients confirmed that these patients form a distinct group, with activation of several host defense mechanisms that resemble a common host-pathogen response. Analysis of the promoter region of genes that were overexpressed in the RAA patients, revealed an enrichment of transcription factor binding sites for NFκB and interferon-activated transcription factors. Moreover, this subgroup of RA patients expressed significantly increased titers of anti-cyclic citrullinated peptide antibodies. We conclude that activation of a host-pathogen response defines a subgroup of RA patients characterized by increased autoreactivity against citrullinated proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O'Fallon WM et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol 2001; 167: 1072–1080.

    Article  CAS  Google Scholar 

  2. Timmer TCG, Baltus B, Vondenhoff M, Huizinga TWJ, Tak PP, Verweij CL et al. Inflammation and ectopic lymphoid structures in Rheumatoid Arthritis synovial tissues dissected by genomics technology. Identification of the IL-7 signaling pathway in tissues with lymphoid neogenesis. Arthritis Rheum 2007; 56: 2492–2502.

    Article  CAS  Google Scholar 

  3. Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with Concomitant Therapy Study Group. N Engl J Med 2000; 343: 1594–1602.

    Article  CAS  Google Scholar 

  4. Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 2003; 349: 1907–1915.

    Article  CAS  Google Scholar 

  5. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004; 350: 2572–2581.

    Article  CAS  Google Scholar 

  6. Zendman AJ, van Venrooij WJ, Pruijn GJ . Use and significance of anti-CCP autoantibodies in rheumatoid arthritis. Rheumatology (Oxford) 2006; 45: 20–25.

    Article  CAS  Google Scholar 

  7. Hueber W, Kidd BA, Tomooka BH, Lee BJ, Bruce B, Fries JF et al. Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum 2005; 52: 2645–2655.

    Article  CAS  Google Scholar 

  8. Firestein GS, Zvaifler NJ . How important are T cells in chronic rheumatoid synovitis? II. T cell-independent mechanisms from beginning to end. Arthritis Rheum 2002; 46: 298–308.

    Article  CAS  Google Scholar 

  9. Silman AJ, MacGregor AJ, Thomson W, Holligan S, Carthy D, Farhan A et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol 1993; 32: 903–907.

    Article  CAS  Google Scholar 

  10. Deighton CM, Wentzel J, Cavanagh G, Roberts DF, Walker DJ . Contribution of inherited factors to rheumatoid arthritis. Ann Rheum Dis 1992; 51: 182–185.

    Article  CAS  Google Scholar 

  11. Ramirez AS, Rosas A, Hernandez-Beriain JA, Orengo JC, Saavedra P, de la FC et al. Relationship between rheumatoid arthritis and Mycoplasma pneumoniae: a case-control study. Rheumatology (Oxford) 2005; 44: 912–914.

    Article  CAS  Google Scholar 

  12. Haier J, Nasralla M, Franco AR, Nicolson GL . Detection of mycoplasmal infections in blood of patients with rheumatoid arthritis. Rheumatology (Oxford) 1999; 38: 504–509.

    Article  CAS  Google Scholar 

  13. Mehraein Y, Lennerz C, Ehlhardt S, Remberger K, Ojak A, Zang KD . Latent Epstein-Barr virus (EBV) infection and cytomegalovirus (CMV) infection in synovial tissue of autoimmune chronic arthritis determined by RNA- and DNA-in situ hybridization. Mod Pathol 2004; 17: 781–789.

    Article  CAS  Google Scholar 

  14. Jenner RG, Young RA . Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 2005; 3: 281–294.

    Article  CAS  Google Scholar 

  15. van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, Voskuyl AE, Rustenburg F, Baggen JM et al. Rheumatoid Arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis 2007; 66: 1008–1014.

    Article  CAS  Google Scholar 

  16. Rubins KH, Hensley LE, Jahrling PB, Whitney AR, Geisbert TW, Huggins JW et al. The host response to smallpox: analysis of the gene expression program in peripheral blood cells in a nonhuman primate model. Proc Natl Acad Sci USA 2004; 101: 15190–15195.

    Article  CAS  Google Scholar 

  17. Demeter J, Beauheim C, Gollub J, Hernandez-Boussard T, Jin H, Maier D et al. The Stanford Microarray Database: implementation of new analysis tools and open source release of software. Nucleic Acids Res 2007; 35: D766–D770.

    Article  CAS  Google Scholar 

  18. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  Google Scholar 

  19. Loots GG, Ovcharenko I, Pachter L, Dubchak I, Rubin EM . rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res 2002; 12: 832–839.

    Article  Google Scholar 

  20. Moynagh PN . TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol 2005; 26: 469–476.

    Article  CAS  Google Scholar 

  21. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2004; 2: E7.

    Article  Google Scholar 

  22. Wucherpfennig KW . Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest 2001; 108: 1097–1104.

    Article  CAS  Google Scholar 

  23. Cacoub P, Poynard T, Ghillani P, Charlotte F, Olivi M, Piette JC et al. Extrahepatic manifestations of chronic hepatitis C. MULTIVIRC Group. Multidepartment Virus C. Arthritis Rheum 1999; 42: 2204–2212.

    Article  CAS  Google Scholar 

  24. Stahl HD, Hubner B, Seidl B, Liebert UG, van dH I, Wilbrink B et al. Detection of multiple viral DNA species in synovial tissue and fluid of patients with early arthritis. Ann Rheum Dis 2000; 59: 342–346.

    Article  CAS  Google Scholar 

  25. Balandraud N, Roudier J, Roudier C . Epstein-Barr virus and rheumatoid arthritis. Autoimmun Rev 2004; 3: 362–367.

    Article  CAS  Google Scholar 

  26. Olsen N, Sokka T, Seehorn CL, Kraft B, Maas K, Moore J et al. A gene expression signature for recent onset rheumatoid arthritis in peripheral blood mononuclear cells. Ann Rheum Dis 2004; 63: 1387–1392.

    Article  CAS  Google Scholar 

  27. Hitchens MR, Robbins PD . The role of the transcription factor DP in apoptosis. Apoptosis 2003; 8: 461–468.

    Article  CAS  Google Scholar 

  28. Lunardi C, Marguerie C, Walport MJ, So AK . T gamma delta cells and their subsets in blood and synovial fluid from patients with rheumatoid arthritis. Br J Rheumatol 1992; 31: 527–530.

    Article  CAS  Google Scholar 

  29. Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA 2002; 99: 15669–15674.

    Article  CAS  Google Scholar 

  30. Toussirot E, Wendling D, Tiberghien P, Luka J, Roudier J . Decreased T cell precursor frequencies to Epstein-Barr virus glycoprotein Gp110 in peripheral blood correlate with disease activity and severity in patients with rheumatoid arthritis. Ann Rheum Dis 2000; 59: 533–538.

    Article  CAS  Google Scholar 

  31. Par G, Rukavina D, Podack ER, Horanyi M, Szekeres-Bartho J, Hegedus G et al. Decrease in CD3-negative-CD8dim(+) and Vdelta2/Vgamma9 TcR+ peripheral blood lymphocyte counts, low perforin expression and the impairment of natural killer cell activity is associated with chronic hepatitis C virus infection. J Hepatol 2002; 37: 514–522.

    Article  CAS  Google Scholar 

  32. Mihm S, Frese M, Meier V, Wietzke-Braun P, Scharf JG, Bartenschlager R et al. Interferon type I gene expression in chronic hepatitis C. Lab Invest 2004; 84: 1148–1159.

    Article  CAS  Google Scholar 

  33. Lyles DS . Cytopathogenesis and inhibition of host gene expression by RNA viruses. Microbiol Mol Biol Rev 2000; 64: 709–724.

    Article  CAS  Google Scholar 

  34. Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V et al. Peripheral V gamma 9/V delta 2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J Immunol 1996; 157: 449–461.

    CAS  PubMed  Google Scholar 

  35. Kasperkovitz PV, Timmer TC, Smeets TJ, Verbeet NL, Tak PP, van Baarsen LG et al. Fibroblast-like synoviocytes derived from patients with rheumatoid arthritis show the imprint of synovial tissue heterogeneity: evidence of a link between an increased myofibroblast-like phenotype and high-inflammation synovitis. Arthritis Rheum 2005; 52: 430–441.

    Article  Google Scholar 

  36. Kol A, Bourcier T, Lichtman AH, Libby P . Chlamydial and human heat shock protein 60 s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 1999; 103: 571–577.

    Article  CAS  Google Scholar 

  37. Kawane K, Ohtani M, Miwa K, Kizawa T, Kanbara Y, Yoshioka Y et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 2006; 443: 998–1002.

    Article  CAS  Google Scholar 

  38. Maas K, Chan S, Parker J, Slater A, Moore J, Olsen N et al. Cutting edge: molecular portrait of human autoimmune disease. J Immunol 2002; 169: 5–9.

    Article  CAS  Google Scholar 

  39. Anzilotti C, Merlini G, Pratesi F, Tommasi C, Chimenti D, Migliorini P . Antibodies to viral citrullinated peptide in rheumatoid arthritis. J Rheumatol 2006; 33: 647–651.

    CAS  PubMed  Google Scholar 

  40. Nielsen TO, West RB, Linn SC, Alter O, Knowling MA, O'Connell JX et al. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 2002; 359: 1301–1307.

    Article  CAS  Google Scholar 

  41. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  Google Scholar 

  42. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 2005; 33: D284–D288.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the following authors for making their microarray data publicly available: RG Jenner (Cambridge, USA) and KH Rubins (Stanford, USA). This study was supported in part by the EURO-RA Marie Curie Trainings network, the European Community's FP6 funding (Autocure), the Netherlands Organization for Health Research and Development (ZonMw) in assignment of the Netherlands Organization for Scientific Research (NWO, grant number 945-02-029), the Innovation Oriented research Program (IOP) on Genomics and Centre for Medical Systems Biology (a center of excellence approved by the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research). This publication reflects only the authors' views. The European Community is not liable for any use that may be made of the information herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T C T M van der Pouw Kraan.

Additional information

Conflicts of interest

We declare that there are no conflicts of interest or financial interests that are relevant to the research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Pouw Kraan, T., van Baarsen, L., Wijbrandts, C. et al. Expression of a pathogen-response program in peripheral blood cells defines a subgroup of Rheumatoid Arthritis patients. Genes Immun 9, 16–22 (2008). https://doi.org/10.1038/sj.gene.6364438

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364438

Keywords

This article is cited by

Search

Quick links