1932

Abstract

Abstract

Cilia and flagella are ancient, evolutionarily conserved organelles that project from cell surfaces to perform diverse biological roles, including whole-cell locomotion; movement of fluid; chemo-, mechano-, and photosensation; and sexual reproduction. Consistent with their stringent evolutionary conservation, defects in cilia are associated with a range of human diseases, such as primary ciliary dyskinesia, hydrocephalus, polycystic liver and kidney disease, and some forms of retinal degeneration. Recent evidence indicates that ciliary defects can lead to a broader set of developmental and adult phenotypes, with mutations in ciliary proteins now associated with nephronophthisis, Bardet-Biedl syndrome, Alstrom syndrome, and Meckel-Gruber syndrome. The molecular data linking seemingly unrelated clinical entities are beginning to highlight a common theme, where defects in ciliary structure and function can lead to a predictable phenotypic pattern that has potentially predictive and therapeutic value.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genom.7.080505.115610
2006-09-22
2024-03-28
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.genom.7.080505.115610
Loading
/content/journals/10.1146/annurev.genom.7.080505.115610
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error