skip to main content
research-article

Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems

Published:01 November 2010Publication History
Skip Abstract Section

Abstract

The acceleration of molecular dynamics (MD) simulations using high-performance reconfigurable computing (HPRC) has been much studied. Given the intense competition from multicore and GPUs, there is now a question whether MD on HPRC can be competitive. We concentrate here on the MD kernel computation: determining the short-range force between particle pairs. In one part of the study, we systematically explore the design space of the force pipeline with respect to arithmetic algorithm, arithmetic mode, precision, and various other optimizations. We examine simplifications and find that some have little effect on simulation quality. In the other part, we present the first FPGA study of the filtering of particle pairs with nearly zero mutual force, a standard optimization in MD codes. There are several innovations, including a novel partitioning of the particle space, and new methods for filtering and mapping work onto the pipelines. As a consequence, highly efficient filtering can be implemented with only a small fraction of the FPGA’s resources. Overall, we find that, for an Altera Stratix-III EP3ES260, 8 force pipelines running at nearly 200 MHz can fit on the FPGA, and that they can perform at 95% efficiency. This results in an 80-fold per core speed-up for the short-range force, which is likely to make FPGAs highly competitive for MD.

References

  1. Alam, S., Agarwal, P., Smith, M., Vetter, J., and Caliga, D. 2007. Using FPGA devices to accelerate biomolecular simulations. Computer 40, 3, 66--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Altera Corporation. 2009. Stratix-III Device family overview. www.altera.com/literature/hb/stx3/stx3_iii51001.pdf (accessed 6/09).Google ScholarGoogle Scholar
  3. Amisaki, T., Fujiwara, T., Kusumi, A., Miyagawa, H., and Kitamura, K. 1995. Error evaluation in the design of a special-purpose processor that calculates nonbonded forces in molecular dynamics simulations. J. Computat. Chem. 16, 9, 1120--1130.Google ScholarGoogle ScholarCross RefCross Ref
  4. Anderson, J., Lorenz, C., and Travesset, A. 2008. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Computat. Phys. 227, 5342--5359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Azizi, N., Kuon, I., Egier, A., Darabiha, A., and Chow, P. 2004. Reconfigurable molecular dynamics simulator. In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM). 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bowers, K. J., Chow, E., Xu, H., Drur, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., and Shaw, D. E. 2006. Scalable algorithms for molecular dynamics simulations. In Proceeding of Supercomputing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chiu, M. and Herbordt, M. 2009. Efficient filtering for molecular dynamics simulations. In Proceedings of the IEEE Conference on Field Programmable Logic and Applications.Google ScholarGoogle Scholar
  8. Chiu, M., Herbordt, M., and Langhammer, M. 2008. Performance potential of molecular dynamics simulations on high performance reconfigurable computing systems. In Proceedings of HPRCTA.Google ScholarGoogle Scholar
  9. Darden, T., York, D., and Pedersen, L. 1993. Particle Mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089--10092.Google ScholarGoogle ScholarCross RefCross Ref
  10. Fitch, B. G., Rayshubskiy, A., Eleftheriou, M., Ward, T. J. C., Giampapa, M., and Pitman, M. C. 2006. Blue matter: Approaching the limits of concurrency for classical molecular dynamics. In Proceedings of Supercomputing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gu, Y. 2008. FPGA acceleration of molecular dynamics simulations. Ph.D. dissertation, Department of Electrical and Computer Engineering, Boston Univ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gu, Y. and Herbordt, M. 2007. High performance molecular dynamics simulations with FPGA coprocessors. In Proceedings of Reconfigurable Systems Summer Institute.Google ScholarGoogle Scholar
  13. Gu, Y., VanCourt, T., and Herbordt, M. 2006a. Accelerating molecular dynamics simulations with configurable circuits. IEE Proc. Comput. Digital Techn. 153, 3, 189--195.Google ScholarGoogle ScholarCross RefCross Ref
  14. Gu, Y., VanCourt, T., and Herbordt, M. 2006b. Improved interpolation and system integration for FPGA-based molecular dynamics simulations. In Proceedings of the IEEE Conference on Field Programmable Logic and Applications. 21--28.Google ScholarGoogle Scholar
  15. Gu, Y., VanCourt, T., and Herbordt, M. 2008. Explicit design of FPGA-based coprocessors for short-range force computation in molecular dynamics simulations. Paral. Comput. 34, 4--5, 261--271. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hamada, T. and Nakasato, N. 2005. Massively parallel processors generator for reconfigurable system. In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hardy, D., Stone, J., and Schulten, K. 2009. Multilevel summation of electrostatic potentials using graphics processing units. Paral. Comput. 35, 167--187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hauck, S., and DeHon, A. 2008. Reconfigurable Computing: The Theory and Practice of FPGA-Based Computing. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Izaguirre, J., Hampton, S., and Matthey, T. 2005. Parallel multigrid summation for the n-body problem. J. Paral. Distrib. Comput. 65, 949--962. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kindratenko, V., and Pointer, D. 2006. A case study in porting a production scientific supercomputing application to a reconfigurable computer. In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM). 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Komeiji, Y., Uebayasi, M., Takata, R., Shimizu, A., Itsukashi, K., and Taiji, M. 1997. Fast and accurate molecular dynamics simulation of a protein using a special-purpose computer. J. Computat. Chem. 18, 12, 1546--1563.Google ScholarGoogle ScholarCross RefCross Ref
  22. Langhammer, M. 2008. Floating point datapath synthesis for FPGAs. In Proceedings of the IEEE Conference on Field Programmable Logic and Applications. 355--360.Google ScholarGoogle ScholarCross RefCross Ref
  23. Larson, R., Salmon, J., Deneroff, M., Young, C., Grossman, J., Shan, Y., Klepseis, J., and Shaw, D. 2008. High-througput pairwise point interactions in Anton, a specialized machine for molecular dynamics simulation. In Proceedings of High Performance Computer Architecture. 331--342.Google ScholarGoogle Scholar
  24. Matthey, T. 2004. ProtoMol, an object-oriented framework for prototyping novel algorithms for molecular dynamics. ACM Trans. Math. Softw. 30, 3, 237--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Phillips, J. 2007. Refactoring NAMD for petascale machines and graphics processors. In Proceedings of the 5th Annual Workshop on Charm++ and Its Applications.Google ScholarGoogle Scholar
  26. Phillips, J., Zheng, G., and Kale, L. 2002. NAMD: biomolecular simulation on thousands of processors. In Proceedings of Supercomputing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rapaport, D. 2004. The Art of Molecular Dynamics Simulation. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rodrigues, C., Hardy, D., Stone, J., Schulten, K., and Hwu, W.-M. 2008. GPU acceleration of cutoff pair potentials for molecular modeling applications. In Proceedings of the ACM International Conference on Computing Frontiers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Scrofano, R., Gokhale, M., Trouw, F., and Prasanna, V. 2006. A hardware/software approach to molecular dynamics on reconfigurable computers. In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM). 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Scrofano, R. and Prasanna, V. 2006. Preliminary investigation of advanced electrostatics in molecular dynamics on reconfigurable computers. In Proceedings of Supercomputing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Shan, Y., Klepeis, J., Eastwood, M., Dror, R., and Shaw, D. 2005. Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. J. Chem. Phys. 122, 4.Google ScholarGoogle ScholarCross RefCross Ref
  32. Shaw, D. E., Deneroff, M. M., Dror, R. O., Kuskin, J. S., Larson, R. H., Salmon, J. K., Young, C., Batson, B., Bowers, K. J., Chao, J. C., Eastwood, M. P., Gagliardo, J. P., Ho, C. R., Ierardi, D. J., Kolossváry, I., Klepeis, J. L., Layman, T., McLeavy, C., Moraes, M. A., Mueller, R., Priest, E. C., Shan, Y., Spengler, J., Theobald, M., Towles, B., and Wang, S. C. 2007. Anton, A special-purpose machine for molecular dynamics simulation. In Proceedings of the International Conference on Computer Architecture. 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Shi, G., and Kindratenko, V. 2008. Implementation of NAMD molecular dynamics non-bonded force-field on the Cell Broadband Engine processor. In Proceedings of the 9th International IEEE Work. Parallel and Distributed Scientific and Engineering Computing.Google ScholarGoogle Scholar
  34. Skeel, R., Tezcan, I., and Hardy, D. 2002. Multiple grid methods for classical molecular dynamics. J. Computat. Chem. 23, 673--684.Google ScholarGoogle ScholarCross RefCross Ref
  35. Snir, M. 2004. A note on N-body computations with cutoffs. Theory Comput. Syst. 37, 295--318.Google ScholarGoogle ScholarCross RefCross Ref
  36. Stone, J., Phillips, J., Freddolino, P., Hardy, D., Trabuco, L., and Schulten, K. 2007. Accelerating molecular modeling applications with graphics processors. J. Computat. Chem. 28, 2618--2640.Google ScholarGoogle ScholarCross RefCross Ref
  37. Taiji, M., Narumi, T., Ohno, Y., Futatsugi, N., Suenaga, A., Takada, N., and Konagaya, A. 2003. Protein Explorer: A petaflops special-purpose computer system for molecular dynamics simulations. In Proceedings of Supercomputing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. van der Spoel, D. 2004. Gromacs exercises. CSC Course, Espo, Finland.Google ScholarGoogle Scholar
  39. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A., and Berendsen, H. 2005. GROMACS: fast, flexible, and free. J. Computat. Chem. 26, 1701--1718.Google ScholarGoogle ScholarCross RefCross Ref
  40. VanCourt, T., and Herbordt, M. 2009. Elements of high performance reconfigurable computing. In Advances in Computers, Vol. 75. Elsevier, 113--157.Google ScholarGoogle Scholar
  41. Villareal, J., Cortes, J., and Najjar, W. 2007. Compiled code acceleration of NAMD on FPGAs. In Proceedings of Reconfigurable Systems Summer Institute.Google ScholarGoogle Scholar
  42. Wolff, D. and Rudd, W. 1999. Tabulated potentials in molecular dynamics simulations. Computer Phys. Commun. 120, 20--32.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Reconfigurable Technology and Systems
              ACM Transactions on Reconfigurable Technology and Systems  Volume 3, Issue 4
              November 2010
              240 pages
              ISSN:1936-7406
              EISSN:1936-7414
              DOI:10.1145/1862648
              Issue’s Table of Contents

              Copyright © 2010 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 1 November 2010
              • Revised: 1 August 2009
              • Accepted: 1 August 2009
              • Received: 1 March 2009
              Published in trets Volume 3, Issue 4

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader