Abstract

The WHIM syndrome features susceptibility to human Papillomavirus infection-induced warts and carcinomas, hypogammaglobulinemia, recurrent bacterial infections, B and T-cell lymphopenia, and neutropenia associated with retention of senescent neutrophils in the bone marrow (i.e. myelokathexis). This rare disorder is mostly linked to inherited heterozygous autosomal dominant mutations in the gene encoding CXCR4, a G protein coupled receptor with a unique ligand, the chemokine CXCL12/SDF-1. Some individuals who have full clinical forms of the syndrome carry a wild type CXCR4 gene. In spite of this genetic heterogeneity, leukocytes from WHIM patients share in common dysfunctions of the CXCR4-mediated signaling pathway upon exposure to CXCL12. Dysfunctions are characterized by impaired desensitization and receptor internalization, which are associated with enhanced responses to the chemokine. Our increasing understanding of the mechanisms that account for the aberrant CXCL12/CXCR4-mediated responses is beginning to provide insight into the pathogenesis of the disorder. As a result we can expect to identify markers of the WHIM syndrome, as well as other disorders with WHIM-like features that are associated with dysfunctions of the CXCL12/CXCR4 axis.