Skip to main content
Log in

A Pairwise Preferential Interaction Model for Understanding Peptide Aggregation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A pairwise preferential interaction model (PPIM), based on Kirkwood–Buff integrals, is developed to quantify and characterize the interactions between some of the functional groups commonly observed in peptides. The existing experimental data are analyzed to determine the preferential interaction (PI) parameters for different amino acid and small peptide systems in aqueous solutions. The PIs between the different functional groups present in the peptides are then isolated and quantified by assuming simple pairwise additivity. The PPIM approach provides consistent estimates for the pair interactions between the same functional groups obtained from different solute molecules. Furthermore, these interactions appear to be chemically intuitive. It is argued that this type of approach can provide valuable information concerning specific functional group correlations which could give rise to peptide aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross C.A., Poirier M.A.: Nat. Med. 10, S10–S17 (2004)

    Article  Google Scholar 

  2. Hetz C., Soto C.: Cell. Mol. Life Sci. 60, 133 (2003)

    Article  Google Scholar 

  3. Cohen F.E., Kelly J.W.: Nature 426, 905 (2003)

    Article  ADS  Google Scholar 

  4. McQuarrie D.A.: Statistical Mechanics. Harper & Row, New York (1976)

    Google Scholar 

  5. Hill T.L.: Introduction to Statistical Thermodynamics. Addison-Wesley, Reading (1960)

    Google Scholar 

  6. Ben-Naim A.: Statistical Thermodynamics for Chemists and Biochemists. Plenum Press, New York (1992)

    Google Scholar 

  7. Thirumalai D., Klimov D.K., Dima R.I.: Curr. Opin. Struct. Biol. 13, 146 (2003)

    Article  Google Scholar 

  8. Tjernberg L., Hosia W., Bark N., Thyberg J., Johansson J.: J. Biol. Chem. 277, 43243 (2002)

    Article  Google Scholar 

  9. Perutz M.F., Pope B.J., Owen D., Wanker E.E., Scherzinger E.: Proc. Natl. Acad. Sci. USA 99, 5596 (2002)

    Article  ADS  Google Scholar 

  10. Wurth C., Guimard N.K., Hecht M.H.: J. Mol. Biol. 319, 1279 (2002)

    Article  Google Scholar 

  11. Ben-Naim A.: Cell Biophys. 12, 255 (1988)

    Google Scholar 

  12. Marcus Y.: J. Chem. Soc. Fara. Trans. 86, 2215 (1990)

    Article  Google Scholar 

  13. Matteoli E., Mansoori G.A.: Fluctuation Theory of Mixtures. Taylor & Francis, New York (1990)

    Google Scholar 

  14. Matteoli E., Lepori L.: J. Chem. Soc. Farad. Trans. 91, 431 (1995)

    Article  Google Scholar 

  15. Zielkiewicz J.: Phys. Chem. Chem. Phys. 2, 2925 (2000)

    Article  Google Scholar 

  16. Smith P.E.: Biophys. J. 91, 849 (2006)

    Article  ADS  Google Scholar 

  17. Shulgin I.L., Ruckenstein E.: J. Phys. Chem. B 111, 3990 (2007)

    Article  Google Scholar 

  18. Shimizu S., Boon C.L.: J. Chem. Phys. 121, 9147 (2004)

    Article  ADS  Google Scholar 

  19. Chitra R., Smith P.E.: J. Phys. Chem. B 105, 11513 (2001)

    Article  Google Scholar 

  20. Aburi M., Smith P.E.: J. Phys. Chem. B 108, 7382 (2004)

    Article  Google Scholar 

  21. Baynes B.M., Trout B.L.: J. Phys. Chem. B 107, 14058 (2003)

    Article  Google Scholar 

  22. Kang M., Smith P.E.: Fluid Phase Equilib. 256, 14 (2007)

    Article  Google Scholar 

  23. Kirkwood J.G., Buff F.P.: J. Chem. Phys. 19, 774 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  24. Chou P.Y., Fasman G.D.: Trends Biochem. Sci. 2, 128 (1977)

    Article  Google Scholar 

  25. Matteoli E., Lepori L.: J. Chem. Phys. 80, 2856 (1984)

    Article  ADS  Google Scholar 

  26. Chitra R., Smith P.E.: J. Phys. Chem. B 106, 1491 (2002)

    Article  Google Scholar 

  27. Liu H.Q., Ruckenstein E.: J. Phys. Chem. B 102, 1005 (1998)

    Article  Google Scholar 

  28. Rosgen J., Pettitt B.M., Perkyns J., Bolen D.W.: J. Phys. Chem. B 108, 2048 (2004)

    Article  Google Scholar 

  29. Rosgen J., Pettitt B.M., Bolen D.W.: Biochemistry. 43, 14472 (2004)

    Article  Google Scholar 

  30. Smith E.R.B., Smith P.K.: J. Biol. Chem. 117, 209 (1937)

    Google Scholar 

  31. Kuramochi H., Noritomi H., Hoshino D., Nagahama K.: J. Chem. Eng. Data 42, 470 (1997)

    Article  Google Scholar 

  32. Smith E.R.B., Smith P.K.: J. Biol. Chem. 135, 273 (1940)

    Google Scholar 

  33. Zielkiewicz J.: Int. DATA Ser. Sel. Data Mixtures, Ser. A 28, 299 (2000)

    Google Scholar 

  34. Savage J.J., Wood R.H.: J. Solut. Chem. 5, 733 (1976)

    Article  Google Scholar 

  35. Plyasunov A.V., Shock E.L., Wood R.H.: J. Chem. Eng. Data 48, 1463 (2003)

    Article  Google Scholar 

  36. Sedlbauer J., Jakubu P.: Ind. Eng. Chem. Res. 47, 5048 (2008)

    Article  Google Scholar 

  37. Gmehling J.: Pure Appl. Chem. 75, 875 (2003)

    Article  Google Scholar 

  38. Smith P.E., Mazo R.M.: J. Phys. Chem. B 112, 7875 (2008)

    Article  Google Scholar 

  39. Newman K.E.: Chem. Soc. Rev. 23, 31 (1994)

    Article  Google Scholar 

  40. Kusalik P.G., Patey G.N.: J. Chem. Phys. 86, 5110 (1987)

    Article  ADS  Google Scholar 

  41. Lei H.X., Smith P.E.: Biophys. J. 85, 3513 (2003)

    Article  ADS  Google Scholar 

  42. de la Paz M.L., Goldie K., Zurdo J., Lacroix E., Dobson C.M., Hoenger A., Serrano L.: Proc. Natl. Acad. Sci. USA 99, 16052 (2002)

    Article  ADS  Google Scholar 

  43. Chiti F., Stefani M., Taddei N., Ramponi G., Dobson C.M.: Nature 424, 805 (2003)

    Article  ADS  Google Scholar 

  44. H. Tsai H., Zanuy D., Haspel N., Gunasekaran K., Ma B.Y., Tsai C.J., Nussinov R.: Biophys. J. 87, 146 (2004)

    Article  Google Scholar 

  45. Rousseau F., Serrano L., Schymkowitz J.W.H.: J. Mol. Biol. 355, 1037 (2006)

    Article  Google Scholar 

  46. Rousseau F., Schymkowitz J., Serrano L.: Curr. Opin. Struct. Biol. 16, 118 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Edward Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, M., Smith, P.E. A Pairwise Preferential Interaction Model for Understanding Peptide Aggregation. Int J Thermophys 31, 793–804 (2010). https://doi.org/10.1007/s10765-009-0694-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0694-z

Keywords

Navigation