Skip to main content
Log in

Development of an Agrobacterium-mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The tree-legume Leucaena leucocephala (leucaena) is used as a perennial fodder because of its fast-growing foliage, which is high in protein content. The use of leucaena as a fodder is however restricted due to the presence of the toxin mimosine. Improvements in the nutritional contents as well as other agronomic traits of leucaena can be accomplished through genetic transformation. The objective of this research was to develop a transformation protocol for leucaena using phosphinothricin resistance as the plant selectable marker. Explants obtained from immature zygotic embryos infected with the Agrobacterium tumefaciens strain C58C1 containing the binary plasmid pCAMBIA3201 produced four putative transformed leucaena plants. Transformation was confirmed by PCR, RT-PCR, Southern blot, Western analyses, GUS-specific enzyme activity and herbicide leaf spraying assay. A transformation efficiency of 2% was established using this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

Benzyladenine

C/S/RIM:

Callus/shoot/root induction medium

GUS:

β-Glucuronidase

IBA:

Indole butyric acid

NAA:

Naphthalene acetic acid

References

  • Archilletti T, Lauri P, Damiano C (1995) Agrobacterium-mediated transformation of almond leaf pieces. Plant Cell Rep 14:267–272. doi:10.1007/BF00232026

    Article  CAS  Google Scholar 

  • Ashby AM, Watson MD, Loake GJ, Shaw CH (1988) Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170:4181–4187

    PubMed  CAS  Google Scholar 

  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42:575–606. doi:10.1146/annurev.mi.42.100188.003043

    Article  CAS  Google Scholar 

  • Bishop-Hurley SL, Zabkiewicz RK, Grace L, Gardner RC, Wagner A, Walter C (2001) Genetic transformation and hybridization: conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep 20:235–243. doi:10.1007/s002990100317

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Charity JA, Holland L, Donaldson SS, Grace L, Walter C (2002) Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tissue Organ Cult 70:51–60. doi:10.1023/A:1016009309176

    Article  CAS  Google Scholar 

  • Corredoira E, Montenegro D, San-Jose MC, Vieitez AM, Ballester A (2004) Agrobacterium-mediated transformation of European chestnut embryogenic cultures. Plant Cell Rep 23:311–318. doi:10.1007/s00299-004-0804-0

    Article  PubMed  CAS  Google Scholar 

  • Cote C, Rutledge RG (2002) An improved MUG fluorescent assay for the determination of GUS activity within transgenic tissue of woody plants. Plant Cell Rep 21:619–624

    PubMed  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2003) Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leucaena leucocephala. Water Res 37:441–449. doi:10.1016/S0043-1354(02)00291-9

    Article  PubMed  CAS  Google Scholar 

  • Franche C, Diouf D, Le QV, Bogusz D, N’Diaye A, Gherbi H, Gobe C, Duhoux E (1997) Genetic transformation of the actinorhizal tree Allocasuarina verticillata by Agrobacterium tumefaciens. Plant J 11:897–904. doi:10.1046/j.1365-313X.1997.11040897.x

    Article  CAS  Google Scholar 

  • Gamborg OL, Mill R, Ogima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–156. doi:10.1016/0014-4827(68)90403-5

    Article  PubMed  CAS  Google Scholar 

  • Gartland JS, McHugh AT, Brasier CM, Irvine RJ, Fenning TM, Gartland KMA (2000) Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following transformation with an Agrobacterium tumefaciens binary vector. Tree Physiol 20:901–907

    PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180. doi:10.1038/303179a0

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218. doi:10.1007/BF01977351

    Article  CAS  Google Scholar 

  • Igasaki T, Mohri T, Ichikawa H, Shinohara K (2000) Agrobacterium tumefaciens-mediated transformation of Robinia pseudoacacia. Plant Cell Rep 19:448–453. doi:10.1007/s002990050754

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jones RJ (1979) The value of Leucaena leucocephala as a feed for ruminants in the tropics. World Anim Rev 31:13–23

    Google Scholar 

  • Le QV, Bogusz D, Gherbi H, Lappartient A, Duhoux E, Franche C (1996) Agrobacterium tumefaciens gene transfer to Casuarina glauca, a tropical nitrogen-fixing tree. Plant Sci 118:57–69. doi:10.1016/0168-9452(96)04386-5

    Article  CAS  Google Scholar 

  • Li Z, Fang F, Liu G, Bao M (2007) Stable Agrobacterium-mediated genetic transformation of London plane tree (Platanus acerifolia Willd.). Plant Cell Rep 26:641–650. doi:10.1007/s00299-006-0271-x

    Article  PubMed  CAS  Google Scholar 

  • Lin J-J (1995) Electrotransformation of Agrobacterium. In: Nickoloff JA (ed) Methods in molecular biology. Humana Press, Totowa, pp 171–178

    Google Scholar 

  • Lin RC, Ding ZS, Li LB, Kuang TY (2001) A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol Biol Rep 19:379a–379e

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:437–497

    Article  Google Scholar 

  • Norton BW (1995) The nutritive value of tree legumes. In: Gutteridge RC, Shelton HM (eds) Forage tree legumes in tropical agriculture. CABI, Wallingford, pp 128–132

    Google Scholar 

  • Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA, Maynard CA (2006) Agrobacterium-mediated transformation of American chestnut [Castanea dentata (Marsh.) Borkh.] somatic embryos. Plant Cell Tissue Organ Cult 84:69–78. doi:10.1007/s11240-005-9002-1

    Article  CAS  Google Scholar 

  • Rastogi S, Dwivedi UN (2006) Down-regulation of lignin biosynthesis in transgenic Leucaena leucocephala harboring O-methyltransferase gene. Biotechnol Prog 22:609–616. doi:10.1021/bp050206+

    Article  PubMed  CAS  Google Scholar 

  • Saafi H, Borthakur D (2002) In vitro plantlet regeneration from cotyledon of the tree legume Leucaena leucocephala. Plant Growth Regul 38:279–285. doi:10.1023/A:1021591212710

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EE, Mamiatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Sarria R, Calderon A, Thro AM, Torres E, Mayer JE, Roca WM (1994) Agrobacterium-mediated transformation of Stylosanthes guianensis and production of transgenic plants. Plant Sci 96:119–127. doi:10.1016/0168-9452(94)90228-3

    Article  CAS  Google Scholar 

  • Shelton HM, Brewbaker JL (1994) Leucaena leucocephala—the most widely used forage legume. In: Gutteridge RC, Shelton HM (eds) Forage tree legumes in tropical agriculture. CABI, Wallingford, pp 15–29

    Google Scholar 

  • Soedarjo M, Borthakur D (1996) Simple procedures to remove mimosine from young leaves, seeds and pods of Leucaena leucocephala used as food. Int J Food Sci Technol 31:97–103. doi:10.1111/j.1365-2621.1996.24-321.x

    Article  CAS  Google Scholar 

  • Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R (1999) High-efficiency Agrobacterium-mediate transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39:407–416. doi:10.1023/A:1006126609534

    Article  PubMed  CAS  Google Scholar 

  • Xie DY, Hong Y (2002) Agrobacterium-mediated genetic transformation of Acacia mangium. Plant Cell Rep 20:917–922. doi:10.1007/s00299-001-0397-9

    Article  CAS  Google Scholar 

  • Yang M, Xie X, Zheng C, Zhang F, He X, Li Z (2008) Agrobacterium tumefaciens-mediated genetic transformation of Acacia crassicarpa via organogenesis. Plant Cell Tissue Organ Cult 95:141–147. doi:10.1007/s11240-008-9424-7

    Article  CAS  Google Scholar 

  • Zaragoza C, Munoz-Bertomeu J, Arrillaga I (2004) Regeneration of herbicide-tolerant black locust transgenic plants by SAAT. Plant Cell Rep 22:832–838. doi:10.1007/s00299-004-0766-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation award CBET08-27057. The authors would like to thank Dr. James Brewbaker for providing the leucaena seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulal Borthakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jube, S., Borthakur, D. Development of an Agrobacterium-mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos. Plant Cell Tiss Organ Cult 96, 325–333 (2009). https://doi.org/10.1007/s11240-008-9490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9490-x

Keywords

Navigation