Skip to main content
Log in

Solid Phase Synthesis and Application of Labeled Peptide Derivatives: Probes of Receptor-Opioid Peptide Interactions

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Solid phase synthetic methodology has been developed in our laboratory to incorporate an affinity label (a reactive functionality such as isothiocyanate or bromoacetamide) into peptides (Leelasvatanakij and Aldrich J Peptide Res 56, 80, 2000), and we have used this synthetic strategy to prepare affinity label derivatives of a variety of opioid peptides. To date side reactions have been detected only in two cases, both involving intramolecular cyclization. We have identified several peptide-based affinity labels for δ opioid receptors that exhibit wash-resistant inhibition of binding to these receptors and are valuable pharmacological tools to study opioid receptors. Even in cases where the peptide derivatives do not bind covalently to their target receptor, studying their binding has revealed subtle differences in receptor interactions with particular opioid peptide residues, especially Phe residues in the N-terminal “message” sequences. Solid phase synthetic methodology for the incorporation of other labels (e.g. biotin) into the C-terminus of peptides has also been developed in our laboratory (Kumar and Aldrich Org Lett 5, 613, 2003). These two synthetic approaches have been combined to prepare peptides containing multiple labels that can be used as tools to study peptide ligand-receptor interactions. These solid phase synthetic methodologies are versatile strategies that are applicable to the preparation of labeled peptides for a variety of targets in addition to opioid receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  • Aldrich JV, Choi H, Murray TF (2004) An affinity label for δ opioid receptors derived from [d-Ala2]deltorphin I. J Pept Res 63:108–115

    Article  PubMed  CAS  Google Scholar 

  • Aldrich JV, Kumar V (2006) Methods of synthesizing and using derivatives of [2-(2-aminoethoxy)ethoxy]acetic acid. US Patent 7,038,078 B2

  • Aldrich JV, Vigil-Cruz SC (2003) Narcotic analgesics. In: Abraham DJ (ed) Burger’s medicinal chemistry & drug discovery, vol 6. Wiley, New York, pp 329–481

    Google Scholar 

  • Aldrich Lovett J, Portoghese PS (1987) Synthesis and evaluation of melphalan-containing N,N-dialkylenkephalin analogues as irreversible antagonists of the δ opioid receptor. J Med Chem 30:1668–1674

    Article  Google Scholar 

  • Archer S, Seyed-Mozaffari A, Osei-Gyimah P, Bidlack JM, Abood LG (1983) 14β-(2-Bromoacetamido)morphine and 14β-(2-bromoacetamido)morphinone. J Med Chem 26:1775–1777

    Article  PubMed  CAS  Google Scholar 

  • Arttamangkul S, Alvarez-Maubecin V, Thomas G, Williams JT, Grandy DK (2000) Binding and internalization of fluorescent opioid peptide conjugates in living cells. Mol Pharmacol 58:1570–1580

    PubMed  CAS  Google Scholar 

  • Baindur N, Triggle DJ (1994) Concepts and progress in the development and utilization of receptor-specific fluorescent ligands. Med Res Rev 14:591–664

    Article  PubMed  CAS  Google Scholar 

  • Benyhe S, Hepp J, Simon J, Borsodi A, Medzihradszky K, Wollemann M (1987) Tyr-d-Ala-Gly-(Me)Phe-chloromethyl ketone: a mu specific affinity label for the opioid receptors. Neuropeptides 9:225–235

    Article  PubMed  CAS  Google Scholar 

  • Bowen WD, Hellewell SB, Kelemen M, Huey R, Stewart D (1987) Affinity labeling of δ-opiate receptors using [d-Ala2,Leu5,Cys6]enkephalin. Covalent attachment via thiol-disulfide exchange. J Biol Chem 262:13434–13439

    PubMed  CAS  Google Scholar 

  • Burke TR, Jacobson AE, Rice KC et al (1986) Probes for narcotic receptor mediated phenomena. 12. cis-(+)-3-Methylfentanyl isothiocyanate, a potent site-directed acylating agent for δ opioid receptors. Synthesis, absolute configuration, and receptor enantioselectivity. J Med Chem 29:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Chavkin C, Goldstein A (1981) A specific receptor for the opioid peptide dynorphin: structure-activity relationships. Proc Natl Acad Sci USA 78:6543–6547

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Murray TF, Aldrich JV (2003a) Dermorphin-based potential affinity labels for μ-opioid receptors. J Pept Res 61:40–45

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Murray TF, Aldrich JV (2003b) Synthesis and evaluation of derivatives of leucine enkephalin as potential affinity labels for δ opioid receptors. Biopolymers (Pept Sci) 71:552–557

    Article  CAS  Google Scholar 

  • Choi H, Murray TF, Aldrich JV (2003c) Synthesis and evaluation of potential affinity labels derived from endomorphin-2. J Pept Res 61:58–62

    Article  PubMed  CAS  Google Scholar 

  • Dattachowdhury B, Murray TF, Aldrich JV (2008) The synthesis of DAMGO-based potential affinity labels with high mu opioid receptor affinity and formation of cyclic O-alkyl thiocarbamates. In: Escher E, Lubell WD, Del-Valle S (eds) Peptides for youth, American Peptide Society, San Diego, CA, in press

  • Eppler CM, Hulmes JD, Wang JB et al (1993) Purification and partial amino acid sequence of a mu-opioid receptor from rat brain. J Biol Chem 268:26447–26451

    PubMed  CAS  Google Scholar 

  • Eppler CM, Zysk JR, Corbett M, Shieh H-M (1992) Purification of a pituitary receptor for somatostain. The utility of biotinylated somatostatin analogs. J Biol Chem 267:15603–15612

    PubMed  CAS  Google Scholar 

  • Gaudriault G, Nouel D, Dal Farra C, Beaudet A, Vincent J-P (1997) Receptor-induced internalization of selective peptidic μ and δ opioid ligands. J Biol Chem 272:2880–2888

    Article  PubMed  CAS  Google Scholar 

  • Glasel JA, Venn RF (1981) The sensitivity of opiate receptors and ligands to short wavelength ultraviolet light. Life Sci 29:221–228

    Article  PubMed  CAS  Google Scholar 

  • Koman A, Terenius L (1980) Bifunctional enkephalin analogues for affinity separation purposes. FEBS Lett 118:293–295

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Aldrich JV (2003) A solid phase synthetic strategy for labeled peptides: synthesis of a biotinylated derivative of the δ opioid receptor antagonist TIPP (Tyr-Tic-Phe-PheOH). Org Lett 5:613–616

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Murray TF, Aldrich JV (2000) Extended TIP(P) analogues as precursors for labeled δ-opioid receptor ligands. J Med Chem 43:5050–5054

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Murray TF, Aldrich JV (2002) Solid phase synthesis and evaluation of Tyr-Tic-Phe-Phe(p-NHCOCH2Br) ([Phe(p-NHCOCH2Br)4]TIPP), a potent affinity label for the δ opioid receptors. J Med Chem 45:3820–3823

    Article  PubMed  CAS  Google Scholar 

  • Leelasvatanakij L, Aldrich JV (2000) Solid phase synthetic strategy for the preparation of peptide-based affinity labels: synthesis of dynorphin A analogues. J Pept Res 56:80–87

    Article  PubMed  CAS  Google Scholar 

  • Maeda DY, Berman F, Murray TF, Aldrich JV (2000a) Synthesis and evaluation of isothiocyanate derivatives of the δ-opioid receptor antagonist Tyr-Tic-Phe-Phe (TIPP) as potential affinity labels for δ-opioid receptors. J Med Chem 43:5044–5049

    Article  PubMed  CAS  Google Scholar 

  • Maeda DY, Ishmael JE, Murray TF, Aldrich JV (2000b) Synthesis and evaluation of N,N-dialkyl enkephalin-based affinity labels for δ opioid receptors. J Med Chem 43:3941–3948

    Article  PubMed  CAS  Google Scholar 

  • Marinova Z, Vukojevic V, Surcheva S et al (2005) Translocation of dynorphin neuropeptides across the plasma membrane: a putative mechanism of signal transmission. J Biol Chem 280:26360–26370

    Article  PubMed  CAS  Google Scholar 

  • Peck AM, Kumar V, Murray TF, Aldrich JV (2006) Synthesis and pharmacological evaluation of dual labeled delta opioid receptor peptides. In: Blondelle SE (ed) Understanding biology using peptides. American Peptide Society, San Deigo, CA, pp 525–526

    Google Scholar 

  • Pelton JT, Johnston RB, Balk J, Schmidt CJ, Roche EB (1980) Synthesis and biological activity of chloromethyl ketones of leucine enkephalin. Biochem Biophys Res Commun 97:1391–1398

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS (1992) The role of concepts in structure activity relationship studies of opioid ligands. J Med Chem 35:1927–1937

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS, Sultana M, Takemori AE (1990) Naltrindole 5′-isothiocyanate: a nonequilibrium, highly selective δ-opioid receptor antagonist. J Med Chem 33:1547–1548

    Article  PubMed  CAS  Google Scholar 

  • Rice KC, Jacobson AE, Burke TR, Bajwa BS, Streaty RA, Klee WA (1983) Irreversible ligands with high selectivity toward δ or μ opiate receptors. Science 220:314–316

    Article  PubMed  CAS  Google Scholar 

  • Schiller PW (1993) Development of receptor-selective opioid peptide analogs as pharmacologic tools and as potential drugs. In: Herz A, Akil H, Simon EJ (eds) Opioids I, Handbook of experimental pharmacology, vol 104/I. Springer-Verlag, Berlin, pp 681–710

    Google Scholar 

  • Schiller PW, Nguyen TM-D, Weltrowska G et al (1992) Differential stereochemical requirements of μ vs. δ opioid receptors for ligand binding and signal transduction: development of a class of potent and highly δ-selective peptide antagonists. Proc Natl Acad Sci USA 89:11871–11875

    Article  PubMed  CAS  Google Scholar 

  • Shimohigashi Y, Takada K, Sakamoto H et al (1992) Discriminative affinity labeling of opioid receptors by enkephalin and morphiceptin analogs containing 3-nitro-2-pyridinesulphenyl-activated thiol residues. J Chromatogr 597:425–428

    Article  PubMed  CAS  Google Scholar 

  • Szücs M, Benyhe S, Borsodi A et al (1983a) Binding characteristics and analgesic activity of d-Ala2-Leu5-enkephalin chloromethyl ketone. Life Sci 32:2777–2784

    Article  PubMed  Google Scholar 

  • Szücs M, Di Gleria K, Medzihradszky K (1983b) A new potential affinity label for the opiate receptor. Life Sci 33(Suppl 1):435–438

    Article  PubMed  Google Scholar 

  • Takemori AE, Portoghese PS (1985) Affinity labels for opioid receptors. Annu Rev Pharmacol Toxicol 25:193–223

    Article  PubMed  CAS  Google Scholar 

  • Venn RF, Barnard EA (1981) A potent peptide affinity reagent for the opiate receptor. J Biol Chem 256:1529–1532

    PubMed  CAS  Google Scholar 

  • Wang X, Murray TF, Aldrich JV (2006) Synthesis and pharmacological evaluation of a new generation of TIPP-derived dual-labeled ligands for delta opioid receptors. In: Blondelle SE (ed) Understanding biology using peptides. American Peptide Society, San Deigo, CA, pp 523–524

    Google Scholar 

  • Wieghardt T, Goren HJ (1975) The reactivity of imidazole nitrogens in histidine to alkylation. Bioorg Chem 4:30–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zhengyu Cao for performing the binding assays. This research was supported by grant R01 DA10035 from the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane V. Aldrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldrich, J.V., Kumar, V., Dattachowdhury, B. et al. Solid Phase Synthesis and Application of Labeled Peptide Derivatives: Probes of Receptor-Opioid Peptide Interactions. Int J Pept Res Ther 14, 315–321 (2008). https://doi.org/10.1007/s10989-008-9144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-008-9144-1

Keywords

Navigation