Skip to main content
Log in

Merkel Cells in Somatosensation

  • Published:
Chemosensory Perception

Abstract

Merkel cells are rare epidermal cells whose function in the skin is still debated. These cells localize to highly touch-sensitive areas of vertebrate epithelia, including palatine ridges, touch domes, and finger tips. In most cases, Merkel cells complex with somatosensory afferents to form slowly adapting touch receptors; it is unclear, however, whether mechanosensory transduction occurs in the Merkel cell, the somatosensory afferent, or both. Classic anatomical results suggest that Merkel cells are sensory cells that transduce mechanical stimuli and then communicate with sensory afferents via neurotransmission. This model is supported by recent molecular, immunohistochemical and physiological studies of Merkel cells in vitro and in intact tissues. For example, Merkel cells express essential components of presynaptic machinery, including molecules required for release of the excitatory neurotransmitter glutamate. Moreover, Merkel cells in vitro and in vivo are activated by mechanical stimuli, including hypotonic-induced cell swelling. Although these findings support the hypothesis that Merkel cells are sensory receptor cells, a definitive demonstration that Merkel cells are necessary and sufficient to transduce touch awaits future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PC:

Pacinian corpuscle

RA:

rapidly adapting

SAI:

slowly adapting type I

SAII:

slowly adapting type II

5-HT:

5-hydroxytryptamine/serotonin

SNARE:

soluble N ethylmaleimide sensitive factor attachment receptor

References

  • Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve endings: part 3. Impulses set up by touch and pressure. J Physiol 61:465–483 (PMID: 16993807)

    CAS  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282 (PMID: 16564016)

    Article  CAS  Google Scholar 

  • Bell J, Bolanowski S, Holmes MH (1994) The structure and function of Pacinian corpuscles: a review. Prog Neurobiol 42:79–128 (PMID: 7480788)

    Article  CAS  Google Scholar 

  • Boring EG (1942) Sensation and perception in the history of experimental psychology. Appleton Century Crofts, New York

    Google Scholar 

  • Brown AG, Iggo A (1967) A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit. J Physiol 193:707–733 (PMID: 16992307)

    Google Scholar 

  • Cahusac PM, Senok SS, Hitchcock IS, Genever PG, Baumann KI (2005) Are unconventional NMDA receptors involved in slowly adapting type I mechanoreceptor responses? Neuroscience 133:763–773 (PMID: 15908129)

    Article  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313 (PMID: 10764638)

    Article  CAS  Google Scholar 

  • Chan E, Yung WH, Baumann KI (1996) Cytoplasmic Ca2+ concentrations in intact Merkel cells of an isolated, functioning rat sinus hair preparation. Exp Brain Res 108:357–366 (PMID: 8801116)

    Article  CAS  Google Scholar 

  • Coggeshall RE, Carlton SM (1998) Ultrastructural analysis of NMDA, AMPA, and kainate receptors on unmyelinated and myelinated axons in the periphery. J Comp Neurol 391:78–86 (PMID: 9527543)

    Article  CAS  Google Scholar 

  • Daniels R, McKemy D (2007) Mice left out in the cold: commentary on the phenotype of TRM8-nulls. Mol Pain 3:23 (PMID: 17705869)

    Article  CAS  Google Scholar 

  • Dodt E, Zotterman Y (1952) Mode of action of warm receptors. Acta Physiol Scand 26:345–357 (PMID: 13007491)

    CAS  Google Scholar 

  • Fagan BM, Cahusac PM (2001) Evidence for glutamate receptor mediated transmission at mechanoreceptors in the skin. Neuroreport 12:341–347 (PMID: 11209947)

    Article  CAS  Google Scholar 

  • Gottschaldt KM, Vahle-Hinz C (1981) Merkel cell receptors: structure and transducer function. Science 214:183–186 (PMID: 7280690)

    Article  CAS  Google Scholar 

  • Gottschaldt KM, Vahle-Hinz C (1982) Evidence against transmitter function of met-enkephalin and chemosynaptic impulse generation in “Merkel cell” mechanoreceptors. Exp Brain Res 45:459–463 (PMID: 6279424)

    Article  CAS  Google Scholar 

  • Haeberle H, Bryan LA, Vadakkan TJ, Dickinson ME, Lumpkin EA (2008) Swelling-activated Ca2+ channels trigger Ca2+ signals in Merkel cells. PLoS ONE 3(3):e1750 Mar 12

    Google Scholar 

  • Haeberle H, Fujiwara M, Chuang J, Medina MM, Panditrao M, Bechstedt S, Howard J, Lumpkin EA (2004) Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci U S A 101:14503–14508

    Article  CAS  Google Scholar 

  • Halata Z, Baumann KI (1999) Sensory nerve endings in the hard palate and papilla incisiva of the rhesus monkey. Anat Embryol (Berl) 199:427–437 (PMID: 10221454)

    Article  CAS  Google Scholar 

  • Halata Z, Grim M, Bauman KI (2003) Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: Review and new results. Anat Rec 271A:225–239 (PMID: 12552639)

    Article  Google Scholar 

  • Halata Z, Cooper BY, Baumann KI, Schwegmann C, Friedman RM (1999) Sensory nerve endings in the hard palate and papilla incisiva of the goat. Exp Brain Res 129:218–228 (PMID: 10591896)

    Article  CAS  Google Scholar 

  • Hamann W (1995) Mammalian cutaneous mechanoreceptors. Prog Biophys Mol Biol 64:81–104 (PMID: 8868524)

    Article  CAS  Google Scholar 

  • Harrington T, Merzenich MM (1970) Neural coding in the sense of touch: human sensations of skin indentation compared with the responses of slowly adapting mechanoreceptive afferents innervating the hairy skin of monkeys. Exp Brain Res 10:251–264

    Article  CAS  Google Scholar 

  • Hartschuh W, Weihe E (1980) Fine structural analysis of the synaptic junction of Merkel cell-axon-complexes. J Invest Dermatol 75:159–165 (PMID: 6774030)

    Article  CAS  Google Scholar 

  • Hartschuh W, Weihe E, Yanaihara N, Reinecke M (1983) Immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in Merkel cells of various mammals: evidence for a neuromodulator function of the Merkel cell. J Invest Dermatol 81:361–364 (PMID: 6137503)

    Article  CAS  Google Scholar 

  • He L, Tuckett RP, English KB (2003) 5-HT2 and 3 receptor antagonists suppress the response of rat type I slowly adapting mechanoreceptor: an in vitro study. Brain Res 969:230–236 (PMID: 12676383)

    Article  CAS  Google Scholar 

  • Hensel H, Boman KK (1960) Afferent impulses in cutaneous sensory nerves in human subjects. J Neurophysiol 23:564–578 (PMID: 13713454)

    CAS  Google Scholar 

  • Hitchcock IS, Genever PG, Cahusac PM (2004) Essential components for a glutamatergic synapse between Merkel cell and nerve terminal in rats. Neurosci Lett 362:196–199 (PMID: 15158013)

    Article  CAS  Google Scholar 

  • Horch KW, Whitehorn D, Burgess PR (1974) Impulse generation in type I cutaneous mechanoreceptors. J Neurophysiol 37:267–281

    CAS  Google Scholar 

  • Hunt CC, McIntyre AK (1960) An analysis of fibre diameter and receptor characteristics of myelinated cutaneous afferent fibres in cat. J Physiol 153:99–112 (PMID: 14405412)

    CAS  Google Scholar 

  • Iggo A, Muir AR (1969) The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol 200:763–796 (PMID: 4974746)

    CAS  Google Scholar 

  • Iggo A, Findlater GS (1984) A review of Merkel cell mechanisms. In: Hamann W, Iggo A (eds) Sensory receptor mechanisms. World Scientific, Singapore, pp 117–131

    Google Scholar 

  • Ikeda I, Yamashita Y, Ono T, Ogawa H (1994) Selective phototoxic destruction of rat Merkel cells abolishes responses of slowly adapting type I mechanoreceptor units. J Physiol 479(Pt 2):247–256 (PMID: 7799224)

    Google Scholar 

  • Ishizaki K, Sakurai K, Tazaki M, Inoue T (2006) Response of Merkel cells in the palatal rugae to the continuous mechanical stimulation by palatal plate. Somatosens Motor Res 23:63–72 (PMID: 16846961)

    Article  Google Scholar 

  • Johnson KO, Hsiao SS (1992) Neural mechanisms of tactual form and texture perception. Annu Rev Neurosci 15:227–250 (PMID: 1575442)

    Article  CAS  Google Scholar 

  • Johnson KO, Yoshioka T, Vega-Bermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17:539–558 (PMID: 11151974)

    Article  CAS  Google Scholar 

  • Kim DK, Holbrook KA (1995) The appearance, density, and distribution of Merkel cells in human embryonic and fetal skin: their relation to sweat gland and hair follicle development. J Invest Dermatol 104:411–416 (PMID: 7532197)

    Article  CAS  Google Scholar 

  • Kinkelin I, Stucky CL, Koltzenburg M (1999) Postnatal loss of Merkel cells, but not of slowly adapting mechanoreceptors in mice lacking the neurotrophin receptor p75. Eur J Neurosci 11:3963–3969 (PMID: 10583485)

    Article  CAS  Google Scholar 

  • Knibestöl M (1975) Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area. J Physiol 245:63–80

    Google Scholar 

  • Knibestöl M, Vallbo AB (1980) Intensity of sensation related to activity of slowly adapting mechanoreceptive units in the human hand. J Physiol 300:251–267 (PMID: 7381785)

    Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289 (PMID: 16630838)

    Article  CAS  Google Scholar 

  • Leem JW, Willis WD, Weller SC, Chung JM (1993) Differential activation and classification of cutaneous afferents in the rat. J Neurophysiol 70:2411–2424 (PMID: 8120590)

    CAS  Google Scholar 

  • Lumpkin EA, Collisson T, Parab P, Omer-Abdalla A, Haeberle H, Chen P, Doetzlhofer A, White P, Groves A, Segil N, Johnson JE (2003) Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr Patterns 3:389–395 (PMID: 12915300)

    Article  CAS  Google Scholar 

  • Merkel F (1875) Tastzellen und Tastkörperchen bei den Haustehieren und beim Menschen. Arch Mikrosk Anat 11:636–652

    Google Scholar 

  • Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Corey DP (2003) Lighting up the senses: FM1–43 loading of sensory cells through nonselective ion channels. J Neurosci 23:4054–4065 (PMID: 12764092)

    CAS  Google Scholar 

  • Mihara M, Hashimoto K, Ueda K, Kumakiri M (1979) The specialized junctions between Merkel cell and neurite: an electron microscopic study. J Invest Dermatol 73:325–334 (PMID: 501131)

    Article  CAS  Google Scholar 

  • Mills LR, Diamond J (1995) Merkel cells are not the mechanosensory transducers in the touch dome of the rat. J Neurocytol 24:117–134 (PMID: 7745442)

    Article  CAS  Google Scholar 

  • Morimoto R, Hayashi M, Yatsushiro S, Otsuka M, Yamamoto A, Moriyama Y (2003) Co-expression of vesicular glutamate transporters (VGLUT1 and VGLUT2) and their association with synaptic-like microvesicles in rat pinealocytes. J Neurochem 84:382–391 (PMID: 12559000)

    Article  CAS  Google Scholar 

  • Mountcastle VB (1967) The problem of sensing and the neural coding of sensory events. In: Quarton GC, Melnechuk T, Schmitt FO (eds) The neurosciences. Rockfeller University Press, New York, pp 393–408

    Google Scholar 

  • Munger BL (1965) The intraepidermal innervation of the snout skin of the opossum. A light and electron microscope study, with observations on the nature of Merkel’s Tastzellen. J Cell Biol 26:79–97 (PMID: 5859024)

    Article  CAS  Google Scholar 

  • Nakafusa J, Narisawa Y, Shinogi T, Taira K, Tanaka T, Inoue T, Misago N (2006) Changes in the number of Merkel cells with the hair cycle in hair discs on rat back skin. Br J Dermatol 155:883–889 (PMID: 17034514)

    Article  CAS  Google Scholar 

  • Nordin M (1990) Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J Physiol 426:229–240 (PMID: 2231398)

    CAS  Google Scholar 

  • Nunzi MG, Pisarek A, Mugnaini E (2004) Merkel cells, corpuscular nerve endings and free nerve endings in the mouse palatine mucosa express three subtypes of vesicular glutamate transporters. J Neurocytol 33:359–376 (PMID: 15475690)

    Article  CAS  Google Scholar 

  • Nurse C, Cooper E (1988) Electrophysiological studies on Merkel cells isolated from rat vibrissal mechanoreceptors. In: Hnik P, Soukup T, Vejsada R, Zelena J (eds) Mechanoreceptors—develpment, structure and function. Plenum, New York, pp 189–194

    Google Scholar 

  • Pacitti EG, Findlater GS (1988) Calcium channel blockers and Merkel cells. Prog Brain Res 74:37–42 (PMID: 3187043)

    Article  CAS  Google Scholar 

  • Petit D, Burgess PR (1968) Dorsal column projection of receptors in cat hairy skin supplied by myelinated fibers. J Neurophysiol 31:849–855 (PMID: 5710538)

    CAS  Google Scholar 

  • Phillips JR, Johnson KO (1981) Tactile spatial resolution. II. Neural representation of Bars, edges, and gratings in monkey primary afferents. J Neurophysiol 46:1192–1203 (PMID: 6275041)

    CAS  Google Scholar 

  • Piskorowski RA, Haeberle H, Panditrao M, Lumpkin EA (2008) Voltage-activated ion channels shape calcium signaling in Merkel cells. Pflugers Archiv Eur J Physiol (in press)

  • Righi A, Betts C, Marchetti C, Marucci G, Montebugnoli L, Prati C, WEusebi L, Muzzi L, Ragazzini T, Foschini M (2006) Merkel cells in the oral mucosa. Int J Surg Pathol 14:206–211 (PMID: 16959700)

    Article  Google Scholar 

  • Senok SS, Baumann KI, Halata Z (1996) Selective phototoxic destruction of quinacrine-loaded Merkel cells is neither selective nor complete. Exp Brain Res 110:325–334 (PMID: 8871092)

    Article  CAS  Google Scholar 

  • Simon S, de Araujo I, Gutierrez R, Nicholelis M (2006) The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci 7:890–901 (PMID: 17053812)

    Article  CAS  Google Scholar 

  • Smith KR, Creech BJ (1967) Effects of pharmacological agents on the physiological responses of hair discs. Exp Neurol 19:477–482

    Article  CAS  Google Scholar 

  • Tachibana T, Nawa T (2002) Recent progress in studies on Merkel cell biology. Anat Sci Int 77:26–33

    Article  Google Scholar 

  • Tachibana T, Fujiwara N, Nawa T (2000) Postnatal differentiation of Merkel cells in the rat palatine mucosa, with special reference to the timing of peripheral nerve development and the potency of cell mitosis. Anat Embryol (Berl) 202:359–367

    Article  CAS  Google Scholar 

  • Tachibana T, Endoh M, Kumakami R, Nawa T (2003) Immunohistochemical expressions of mGluR5, P2Y2 receptor, PLC-beta1, and IP3R-I and -II in Merkel cells in rat sinus hair follicles. Histochem Cell Biol 120:13–21

    Article  CAS  Google Scholar 

  • Tachibana T, Endoh M, Fujiwara N, Nawa T (2005) Receptors and transporter for serotonin in Merkel cell-nerve endings in the rat sinus hair follicle. An immunohistochemical study. Arch Histol Cytol 68:19–28

    Article  CAS  Google Scholar 

  • Tachibana T, Yamamoto H, Takahashi N, Kamegai T, Shibanai S, Iseki H, Nawa T (1997) Polymorphism of Merkel cells in the rodent palatine mucosa: immunohistochemical and ultrastructural studies. Arch Histol Cytol 60:379–389 (PMID: 9412741)

    Article  CAS  Google Scholar 

  • Tazaki M, Suzuki T (1998) Calcium inflow of hamster Merkel cells in response to hyposmotic stimulation indicate a stretch activated ion channel. Neurosci Lett 243:69–72 (PMID: 9535115)

    Article  CAS  Google Scholar 

  • Toyoshima K, Seta Y, Takeda S, Harada H (1998) Identification of Merkel cells by an antibody to villin. J Histochem Cytochem 46:1329–1334 (PMID: 9774632)

    CAS  Google Scholar 

  • Toyoshima K, Seta Y, Toyono T, Takeda S (1999) Merkel cells are responsible for the initiation of taste organ morphogenesis in the frog. J Comp Neurol 406:129–140 (PMID: 10100896)

    Article  CAS  Google Scholar 

  • Trulsson M, Johansson RS (2002) Orofacial mechanoreceptors in humans: encoding characteristics and responses during natural orofacial behaviors. Behav Brain Res 135:27–33

    Article  Google Scholar 

  • Vallbo AB, Olsson KA, Westberg KG, Clark FJ (1984) Microstimulation of single tactile afferents from the human hand. Sensory attributes related to unit type and properties of receptive fields. Brain 107(Pt 3):727–749 (PMID: 6478176)

    Article  Google Scholar 

  • Weihe E, Hartschuh W, Schafer MK, Romeo H, Eiden LE (1998) Cutaneous Merkel cells of the rat contain both dynorphin A and vesicular monoamine transporter type 1 (VMAT1) immunoreactivity. Can J Physiol Pharmacol 76:334–339 (PMID: 9673797)

    Article  CAS  Google Scholar 

  • Werner G, Mountcastle VB (1965) Neural activity in mechanoreceptive cutaneous afferents: stimulus-response relations, weber functions, and information transmission. J Neurophysiol 28:359–397 (PMID: 14283062)

    CAS  Google Scholar 

  • Woodbury CJ, Koerber HR (2007) Central and peripheral anatomy of slowly adapting type I low-threshold mechanoreceptors innervating trunk skin of neonatal mice. J Comp Neurol 505:547–561 (PMID: 17924532)

    Article  Google Scholar 

  • Yamashita Y, Akaike N, Wakamori M, Ikeda I, Ogawa H (1992) Voltage-dependent currents in isolated single Merkel cells of rats. J Physiol 450:143–162 (PMID: 1331421)

    CAS  Google Scholar 

  • Zotterman Y (1939) Touch, pain and tickling: an electro-physiological investigation on cutaneous sensory nerves. J Physiol 95:1–28 (PMID: 16995068)

    CAS  Google Scholar 

Download references

Acknowledgment

We thank Ms. Jennifer LaRey for providing valuable comments on the manuscript. Electrophysiological recordings were performed by E.A.L. in the laboratory of Dr. Jonathon Howard at the University of Washington. The authors were supported by grants from the Gillson Longenbaugh Foundation (to E.A.L.), the National Institutes of Health (NIAMS grant AR051219 to E.A.L.), and the National Science Foundation (graduate fellowship to H.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen A. Lumpkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeberle, H., Lumpkin, E.A. Merkel Cells in Somatosensation. Chem. Percept. 1, 110–118 (2008). https://doi.org/10.1007/s12078-008-9012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-008-9012-6

Keywords

Navigation