Skip to main content
Log in

Hydration Profiles of Amyloidogenic Molecular Structures

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Hydration shells of normal proteins display regions of highly structured water as well as patches of less structured bulk-like water. Recent studies suggest that isomers with larger surface densities of patches of bulk-like water have an increased propensity to aggregate. These aggregates are toxic to the cellular environment. Hence, the early detection of these toxic deposits is of paramount medical importance. We show that various morphological states of association of such isomers can be differentiated from the normal protein background based on the characteristic partition between bulk, caged, and surface hydration water and the magnetic resonance (MR) signals of this water. We derive simple mathematical equations relating the compartmentalization of water to the local hydration fraction and the packing density of the newly formed molecular assemblies. Then, we employ these equations to predict the MR response of water constrained by protein aggregation. Our results indicate that single units and compact aggregates that contain no water between constituents induce a shift of the MR signal from normal protein background to values in the hyperintensity domain (bright spots), corresponding to bulk water. In contrast, large plaques that cage significant amounts of water between constituents are likely to generate MR responses in the hypointensity domain (dark spots), typical for strongly correlated water. The implication of these results is that amyloids can display both dark and bright spots when compared to the normal gray background tissue on MR images. In addition, our findings predict that the bright spots are more likely to correspond to amyloids in their early stage of development. The results help explain the MR contrast patterns of amyloids and suggest a new approach for identifying unusual protein aggregation related to disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Makarov, V.A., Andrews, B.K., Smith, P.E., Pettitt, B.M.: Residence times of water molecules in the hydration sites of myoglobin. Biophys. J. 79, 2966–2974 (2000)

    Article  Google Scholar 

  2. Fenimore, P.W., Frauenfelder, H., McMahon, B.H., Parak, F.G.: Slaving: solvent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. U. S. A. 99, 16047–16051 (2002). doi:10.1073/pnas.212637899

    Article  ADS  Google Scholar 

  3. Pal, S.K., Peon, J., Zewail, A.H.: Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. Proc. Natl. Acad. Sci. U. S. A. 99, 1763–1768 (2002). doi:10.1073/pnas.042697899

    Article  ADS  Google Scholar 

  4. Bhattacharyya, S.M., Wang, Z.-G., Zewail, A.H.: Dynamics of water near a protein surface. J. Phys. Chem. B 107, 13218–13228 (2003). doi:10.1021/jp030943t

    Article  Google Scholar 

  5. Despa, F., Fernández, A., Berry, R.S.: Dielectric modulation of biological water. Phys. Rev. Lett. 93, 228104 (2004). doi:10.1103/PhysRevLett.93.228104

    Article  ADS  Google Scholar 

  6. Modig, K., Liepinsh, E., Otting, G., Halle, B.: Dynamics of protein and peptide hydration. J. Am. Chem. Soc. 126, 102–114 (2004). doi:10.1021/ja038325d

    Article  Google Scholar 

  7. Russo, D., Murarka, R.K., Copley, J.R., Head-Gordon, T.: Molecular view of water dynamics near model peptides. J. Phys. Chem. B 109, 12966–12975 (2005). doi:10.1021/jp051137k

    Article  Google Scholar 

  8. Despa, F.: Biological water, its vital role in macromolecular structure and function. Ann. N. Y. Acad. Sci. 1066, 1–11 (2005). doi:10.1196/annals.1363.023

    Article  ADS  Google Scholar 

  9. De Simone, A., Dodson, G.G., Verma, C.S., Zagari, A., Fraternali, F.: Prion and water: tight and dynamical hydration sites have a key role in structural stability. Proc. Natl. Acad. Sci. U. S. A. 102, 7535–7540 (2005). doi:10.1073/pnas.0501748102

    Article  ADS  Google Scholar 

  10. Li, T., Hassanali, A.A., Kao, Y.T., Zhong, D., Singer, S.J.: Hydration dynamics and time scales of coupled water-proton fluctuations. J. Am. Chem. Soc. 129, 3376–3382 (2007). doi: 10.1021/ja0685957

    Article  Google Scholar 

  11. Despa, F., Berry, R.S.: The origin of long range attraction between hydrophobes in water. Biophys. J. 92, 373–378 (2007). doi:10.1529/biophysj.106.087023

    Article  ADS  Google Scholar 

  12. De Simone, A., Zagari, A., Derreumaux, P.: Structural and hydration properties of the partially unfolded states of the prion protein. Biophys. J. 93, 1284–1292 (2007). doi:10.1529/biophysj.107.108613

    Article  Google Scholar 

  13. Frauenfelder, H., Fenimore, P.W., Young, R.D.: Protein dynamics and function: insights from the energy landscape and solvent slaving. IUBMB Life 16, 669–678 (2007)

    Google Scholar 

  14. Ball, P.: Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008). doi:10.1021/cr068037a

    Article  Google Scholar 

  15. Fernández, A., Berry, R.S.: Extent of hydrogen-bond protection in folded proteins: a constraint on packing architectures. Biophys. J. 83, 2475–2481 (2002)

    Article  Google Scholar 

  16. Fernández, A., Berry, R.S.: Molecular dimension explored in evolution to promote proteomic complexity. Proc. Natl. Acad. Sci. U. S. A. 101(101), 13460–13465 (2004). doi:10.1073/pnas.0405585101

    Article  ADS  Google Scholar 

  17. Fernández, A., Scott, R., Berry, R.S.: The nonconserved wrapping of conserved protein folds reveals a trend towards increasing connectivity in proteomic networks. Proc. Natl. Acad. Sci. U. S. A. 101, 2823–2827 (2004). doi:10.1073/pnas.0308295100

    Article  ADS  Google Scholar 

  18. Fernández, A.; Scott, R.; Berry, R.S.: Packing defects as selective switches for drug-based protein inhibitors. Proc. Natl. Acad. Sci. U. S. A. 103(2), 323–328 (2006)

    Article  ADS  Google Scholar 

  19. Denisov, V.P., Halle, B.: Thermal denaturation of ribonuclease A characterized by water 17O and 2H magnetic relaxation dispersion. Biochemistry 37, 9595–9604 (1998). doi:10.1021/bi980442b

    Article  Google Scholar 

  20. Denisov, V.P., Halle, B.: Hydration of denatured and molten globule proteins. Nat. Struct. Biol. 6, 253–260 (1999). doi:10.1038/6692

    Article  Google Scholar 

  21. Chalikian, T.V., Totrov, M., Abagyan, R., Breslauer, K.J.: The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. J. Mol. Biol. 260, 588–603 (1996). doi:10.1006/jmbi.1996.0423

    Article  Google Scholar 

  22. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523–1531 (1992). doi:10.1126/science.255.5051.1523

    Article  ADS  Google Scholar 

  23. Makhatadze, G., Privalov, P.A.: Energetics of protein structure. Adv. Protein Chem. 47, 307–425 (1995). doi:10.1016/S0065-3233(08)60548-3

    Article  Google Scholar 

  24. Petukhov, M., Rychkov, G., Firsov, L., Serrano, L.: H-bonding in protein hydration revisited. Protein Sci. 13, 2120–2129 (2004). doi:10.1110/ps.04748404

    Article  Google Scholar 

  25. Reiss, H.: Scaled particle methods in the statistical thermodynamics of fluids. Adv. Chem. Phys. 9, 1–84 (1965). doi:10.1002/9780470143551.ch1

    Article  Google Scholar 

  26. Fernández, A.: What factor drives the fibrillogenic association of beta-sheets. FEBS Lett. 579, 6635–6640 (2005). doi:10.1016/j.febslet.2005.10.058

    Article  Google Scholar 

  27. Zimmerman, J.R., Brittin, W.E.: Nuclear magnetic resonance studies in multiple phase systems: lifetime of a water molecule in an absorbing phase on silica gel. J. Phys. Chem. 6, 1328–1333 (1957). doi:10.1021/j150556a015

    Article  Google Scholar 

  28. Bryant, R.G.: The dynamics of water–protein interactions. Annu. Rev. Biophys. Biomol. Struct. 25, 29–53 (1996). doi:10.1146/annurev.bb.25.060196.000333

    Article  Google Scholar 

  29. Denisov, V.P., Peters, J., Horlein, H.D., Halle, B.: Using buried water molecules to explore the energy landscape of proteins. Nat. Struct. Biol. 3, 505–509 (1996). doi:10.1038/nsb0696-505

    Article  Google Scholar 

  30. Foster, K.R., Resing, H.A., Garroway, A.N.: Bounds on “bound water”: transverse nuclear magnetic resonance relaxation in barnacle muscle. Science 194, 324–326 (1976). doi:10.1126/science.968484

    Article  ADS  Google Scholar 

  31. Perutz, M.F., Finch, J.T., Berriman, J., Lesk, A.: Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. U. S. A. 99, 5591–5595 (2002). doi:10.1073/pnas.042681399

    Article  ADS  Google Scholar 

  32. Kishimoto, A., Hasegawa, K., Suzuki, H., Taguchi, H., Namba, K., Yoshida, M.: β-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem. Biophys. Res. Commun. 315, 739–745 (2004). doi:10.1016/j.bbrc.2004.01.117

    Article  Google Scholar 

  33. Petkova, A.T., Leapman, R.D., Guo, Z.H., Yau, W.M., Mattson, M.P., Tycko, R.: Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307, 262–265 (2005). doi:10.1126/science.1105850

    Article  ADS  Google Scholar 

  34. Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.Ø., Riekel, C., Grothe, R., Eisenberg, D.: Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005). doi:10.1038/nature03680

    Article  ADS  Google Scholar 

  35. Paravastu, A.K., Petkova, A.T., Tycko, R.: Polymorphic fibril formation by residues 10–40 of the Alzheimer’s beta-amyloid peptide. Biophys. J. 90, 4618–4629 (2006). doi:10.1529/biophysj.105.076927

    Article  ADS  Google Scholar 

  36. Meersman, F., Dobson, C.M.: Probing the pressure–temperature stability of amyloid fibrils provides new insights into their molecular properties. Biochim. Biophys. Acta 1764, 452–460 (2006)

    Google Scholar 

  37. Benveniste, H., Einstein, G., Kim, K.R., Hulette, C., Johnson, G.A.: Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc. Natl. Acad. Sci. U. S. A. 96, 14079–14084 (1999). doi:10.1073/pnas.96.24.14079

    Article  ADS  Google Scholar 

  38. Lee, S.P., Falangola, M.F., Nixon, R.A., Duff, K., Helpern, J.A.: Visualization of beta-amyloid plaques in a transgenic mouse model of Alzheimer’s disease using MR microscopy without contrast reagents. Magn. Reson. Med. 52, 538–544 (2004). doi:10.1002/mrm.20196

    Article  Google Scholar 

  39. Jack, C.R. Jr., Garwood, M., Wengenack, T.M., Borowski, B., Curran, G.L., Lin, J., Adriany, G., Grohn, O.H., Grimm, R., Poduslo, J.F.: In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn. Reson. Med. 52, 1263–1271 (2004). doi:10.1002/mrm.20266

    Article  Google Scholar 

  40. Jack, C.R. Jr., Wengenack, T.M., Reyes, D.A., Garwood, M., Curran, G.L., Borowski, B.J., Lin, J., Preboske, G.M., Holasek, S.S., Adriany, G., Poduslo, J.F.: In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J. Neurosci. 25, 10041–10048 (2005). doi:10.1523/JNEUROSCI.2588-05.2005

    Article  Google Scholar 

  41. Vanhoutte, G., Dewachter, I., Borghgraef, P., Van Leuven, F., Van der Linden, A.: Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn. Reson. Med. 53, 607–613 (2005). doi:10.1002/mrm.20385

    Article  Google Scholar 

  42. Selenko, P., Serber, Z., Gadea, B., Ruderman, J., Wagner, G.: Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extract and intact oocytes. Proc. Natl. Acad. Sci. U. S. A. 103, 11904–11909 (2006). doi:10.1073/pnas.0604667103

    Article  ADS  Google Scholar 

  43. Charlton, L.M., Pielak, G.J.: Peeking into living eukaryotic cells with high-resolution NMR. Proc. Natl. Acad. Sci. U. S. A. 103, 11817–11818 (2006). doi:10.1073/pnas.0605297103

    Article  ADS  Google Scholar 

  44. Urbanc, B., Cruz, L., Yun, S., Buldyrev, S.V., Bitan, G., Teplow, D.B., Stanley, H.E.: In silico study of amyloid β-protein folding and oligomerization. Proc. Natl. Acad. Sci. U. S. A. 101, 17345–17350 (2004). doi:10.1073/pnas.0408153101

    Article  ADS  Google Scholar 

  45. Buchete, N.-V., Tycko, R., Hummer, G.: Molecular dynamics simulations of Alzheimer’s β-amyloid protofilaments. J. Mol. Biol. 353, 804–821 (2005)

    Article  Google Scholar 

  46. Cox, D.L., Sing, R.R.P., Yang, S.: Prion disease: exponential growth requires membrane binding. Biophys. J. 90, L77–L79 (2006). doi:10.1529/biophysj.106.081703

    Article  Google Scholar 

  47. Zheng, J., Jang, H., Ma, B., Nussinov, R.: Annular structures as intermediates in fibril formation of Alzheimer Aβ 17 − 42. J. Phys. Chem. B 112, 6856–6865 (2008). doi:10.1021/jp711335b

    Article  Google Scholar 

  48. Despa, F.; Berry, R.S.: Hydrophobe–water interactions: methane as a model. Biophys. J. 95, 4241–4245 (2008)

    Article  ADS  Google Scholar 

  49. Lin, M.S., Fawzi, N.L., Head-Gordon, T.: Hydrophobic potential of mean force as a solvation function for protein structure prediction. Structure 15, 727–740 (2007). doi:10.1016/j.str.2007

    Article  Google Scholar 

Download references

Acknowledgements

F.D. acknowledges that part of this work was done at the John von Neumann Institute for Computing, Research Center Jülich, Germany. The research of A.F. is supported by NIH grant R01-GM072614. L.R.S. would like to acknowledge support from the Institute for Biophysical Dynamics at the University of Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Despa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Despa, F., Fernández, A., Scott, L.R. et al. Hydration Profiles of Amyloidogenic Molecular Structures. J Biol Phys 34, 577–590 (2008). https://doi.org/10.1007/s10867-008-9122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9122-z

Keywords

Navigation