Skip to main content
Log in

Stochastic Hierarchical Systems: Excitable Dynamics

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We present a discrete model of stochastic excitability by a low-dimensional set of delayed integral equations governing the probability in the rest state, the excited state, and the refractory state. The process is a random walk with discrete states and nonexponential waiting time distributions, which lead to the incorporation of memory kernels in the integral equations. We extend the equations of a single unit to the system of equations for an ensemble of globally coupled oscillators, derive the mean field equations, and investigate bifurcations of steady states. Conditions of destabilization are found, which imply oscillations of the mean fields in the stochastic ensemble. The relation between the mean field equations and the paradigmatic Kuramoto model is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1992)

    Google Scholar 

  2. Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vol. 2. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  3. Weissman, H., Weiss, G.H., Havlin, S.: Transport-properties of the continuous-time random-walk with a long-tailed waiting-time density. J. Stat. Phys. 57, 301–317 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  4. Fisher, D.S., Huse, D.A.: Nonequilibrium dynamics of spin glasses. Phys. Rev. B 38, 373–385 (1988)

    Article  ADS  Google Scholar 

  5. Sànchez, R., Newman, D.E., Carreras, B.A.: Waiting-time statistics of self-organized-criticality systems. Phys. Rev. Lett. 88, 068302 (2002)

    Article  ADS  Google Scholar 

  6. Fedotov, S., Okuda, Y.: Non-Markovian random processes and traveling fronts in a reaction-transport system with memory and long-range interactions. Phys. Rev. E 66, 021113 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Shlesinger, M.F.: Asymptotic solutions of continuous-time random walks. J. Stat Phys. 10, 421–434 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  8. Nieuwenhuizen, Th.M., Ernst, M.H.: Excess noise in a hopping model for a resistor with quenched disorder. J. Stat. Phys. 41, 773–801 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  9. Van den Broeck, C.: Waiting times for random walks on regular and fractal lattices. Phys. Rev. Lett. 62, 1421–1424 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  10. Prager, T., Falcke, M., Schimansky-Geier, L., Zaks, M.A.: Non-Markovian approach to globally coupled excitable systems. Phys. Rev. E 76, 011118 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. Prager, T., Lerch, H.-P., Schimansky-Geier, L., Schöll, E.: Increase of coherence in excitable systems by delayed feedback. J. Phys. A: Math. Theor. 40, 11045–11055 (2007)

    Article  MATH  ADS  Google Scholar 

  12. Cox, R.: Renewal Theory. Methuen, London (1965)

    Google Scholar 

  13. Prager, T., Naundorf, B., Schimansky-Geier, L.: Coupled three-state oscillators. Physica A 325, 176–185 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Lindner, B., García-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)

    Article  ADS  Google Scholar 

  15. Falcke, M.: Reading the patterns in living cells – the physics of Ca2+ signaling. Adv. Phys. 53, 255–440 (2004)

    Article  ADS  Google Scholar 

  16. Fohlmeister, C., Ritz, R., Gerstner, W., van Hemmen, J.L.: Spontaneous excitations in the visual-cortex – stripes, spirals, rings, and collective bursts. Neural Comput. 7, 905–914 (1995)

    Article  Google Scholar 

  17. Mikhailov, A.S.: Foundation of Synergetics. Springer, Berlin (1992)

    Google Scholar 

  18. Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.E., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems. Springer, Berlin (2002)

    MATH  Google Scholar 

  19. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. Cambridge Univ. Press (2001)

  20. Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., Barabási, A.L.: The sound of many hands clapping – Tumultuous applause can transform itself into waves of synchronized clapping. Nature (London) 403, 849–850 (2000)

    Article  ADS  Google Scholar 

  21. Engel, A.K., Fries, P., Singer, W.: Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev. Neurosci. 2, 704–716 (2001)

    Article  Google Scholar 

  22. Tass, P.A.: Phase Resetting in Medicine and Biology-Stochastic Modelling and Data Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  23. Ganopolski, A., Rahmstorf, S.: Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett. 88, 038501 (2002)

    Article  ADS  Google Scholar 

  24. Gutkin, B.S., Ermentrout, G.B.: Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput. 10, 1047–1065 (1998)

    Article  Google Scholar 

  25. Skupin, A., Kettenmann, H., Winkler, U., Wartenberg, M., Sauer, H., Tovey, S.C., Taylor, C.W.: How does intracellular Ca2+ oscillate: by chance or by the clock? Biophys. J. 94, 2404–2411 (2008)

    Article  Google Scholar 

  26. Wiener, N., Rosenbluth, A.: The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205–265 (1946)

    Google Scholar 

  27. Jung, P., Mayer-Kress, G.: Spatiotemporal stochastic resonance in excitable media. Phys. Rev. Lett. 74, 2130–2133 (1995)

    Article  ADS  Google Scholar 

  28. Ricciardi, L.M.: Diffusion Processes and Related Topics in Biology, pp. 200. Lecture Notes in Biomathematics, vol. 14. Springer, Berlin (1977)

    Google Scholar 

  29. Talkner, P.: Statistics of entrance times. Physica A 325, 124–135 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Brunel, N., Hakim, V., Richardson, M.J.E.: From subthreshold to firing-rate resonance. Phys. Rev. E 67, 051916 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Schindler, M., Talkner, P., Hänggi, P.: Firing time statistics for driven neuron models: analytic expressions versus numerics. Phys. Rev. Lett. 93, 048102 (2004)

    Article  ADS  Google Scholar 

  32. Verechtchaguina, T., Sokolov, I.M., Schimansky-Geier, L.: First passage time densities in resonate-and-fire models. Phys. Rev. E 73, 031108 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. Thul, R., Falcke, M.: Waiting time distributions for cluster of complex molecules. Europhys. Lett. 79, 38003 (2007)

    Article  ADS  Google Scholar 

  34. Sneyd, J., Keener, J.P.: Mathematical Physiology. Springer, Berlin (1999)

    Google Scholar 

  35. Haken, H.: Advanced Synergetics. Springer, Berlin (1983)

    MATH  Google Scholar 

  36. Winfree, A.T.: Biological rhythms and behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  Google Scholar 

  37. Winfree, A.T.: Integrated view resetting a circadian clock. J. Theor. Biol. 28, 327–374 (1970)

    Article  Google Scholar 

  38. Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. In: Arakai, H. (ed.), International Symposium on Mathematical Problems in Theoretical Physics, vol. 39. Springer, New York (1975)

    Google Scholar 

  39. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, New York (1984)

    MATH  Google Scholar 

  41. Nollau, V.: Semi-Markovsche Prozesse. Akademie, Berlin (1980)

    MATH  Google Scholar 

  42. Prager, T., Schimansky-Geier, L.: Stochastic resonance in a non-Markovian discrete state model for excitable systems. Phys. Rev. Lett. 91, 230601 (2003)

    Article  ADS  Google Scholar 

  43. Prager, T., Schimansky-Geier, L.: Phase velocity and phase diffusion in periodically driven discrete-state systems. Phys. Rev. E. 71, 031112 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  44. Shinomoto, S., Kuramoto, Y.: Phase transitions in active rotator systems. Progr. Theor. Phys. 75, 1105–1110 (1986)

    Article  ADS  Google Scholar 

  45. Sakaguchi, H., Shinomoto, S., Kuramoto, Y.: Phase-transitions and their bifurcation-analysis in a large population of active rotators with mean-field coupling. Progr. Theor. Phys. 79, 600–607 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  46. Hempel, H., Schimansky-Geier, L., García-Ojalvo, J.: Noise-sustained pulsating patterns and global oscillations in subexcitable media. Phys. Rev. Lett. 82, 3713–3716 (1999)

    Article  ADS  Google Scholar 

  47. Neiman, A., Schimansky-Geier, L., Cornell-Bell, A., Moss, F.: Noise-enhanced phase synchronization in excitable media. Phys. Rev. Lett. 83, 4896–4899 (1999)

    Article  ADS  Google Scholar 

  48. Hu, B., Zhou, C.S.: Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance. Phys. Rev. E 61, R1001–R1004 (2000)

    Article  ADS  Google Scholar 

  49. Zhou, C., Kurths, J., Hu, B.: Array-enhanced coherence resonance: nontrivial effects of heterogeneity and spatial independence of noise. Phys. Rev. Lett. 87, 098101 (2001)

    Article  ADS  Google Scholar 

  50. Nikitin, A., Néda, Z., Vicsek, T.: Collective dynamics of two-mode stochastic oscillators. Phys. Rev. Lett. 87, 024101 (2001)

    Article  ADS  Google Scholar 

  51. Busch, H., Kaiser, F.: Influence of spatiotemporally correlated noise on structure formation in excitable media. Phys. Rev. E 67, 041105 (2003)

    Article  ADS  Google Scholar 

  52. Zaks, M.A., Neiman, A.B., Feistel, S., Schimansky-Geier, L.: Noise-controlled oscillations and their bifurcations in coupled phase oscillators. Phys. Rev. E 68, 066206 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  53. Ebeling, W., Herzel, H., Richert, W., Schimansky-Geier, L.: Influence of noise on Duffing - van der Pol oscillators. ZAMM 66, 141–146 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Treutlein, H., Schulten, K.: Noise induced limit cycles of the Bonhoeffer-Van der Pol model of neural pulses. Ber. Bunsenges. Phys. Chem. 89, 710–718 (1985)

    Google Scholar 

  55. Sigeti, D., Horsthemke, W.: Pseudo-regular oscillations induced by external noise. J. Stat. Phys. 54, 1217–1222 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  56. Gang, H., Ditzinger, T., Ning, C.Z., Haken, H.: Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807–810 (1993)

    Article  ADS  Google Scholar 

  57. Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775–778 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. Rosenblum, M.G., Pikovsky, A.S.: Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92, 114102 (2004)

    Article  ADS  Google Scholar 

  59. Zaks, M.A., Sailer, X., Schimansky-Geier, L., Neiman, A.: Noise-induced complexity: from subthreshold oscillations to spiking in coupled excitable systems. Chaos 15, 026117 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  60. Park, S.H., Kim, S.: Noise-induced phase transitions in globally coupled active rotators. Phys. Rev. E 53, 3425–3430 (1996)

    Article  ADS  Google Scholar 

  61. Huber, D., Tsimring, L.S.: Cooperative dynamics in a network of stochastic elements with delayed feedback. Phys. Rev. E 71, 036150 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  62. Pomplun, J., Amann, A., Schöll, E.: Mean-field approximation of time-delayed feedback control of noise-induced oscillations in the Van der Pol system. Europhys. Lett. 71, 366–372 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  63. Tsimring, L.S., Pikovsky, A.S.: Noise-induced dynamics in bistable systems with delay. Phys. Rev. Lett. 87, 250602 (2001)

    Article  ADS  Google Scholar 

  64. Huber, D., Tsimring, L.S.: Dynamics of an ensemble of noisy bistable elements with global time delayed coupling. Phys. Rev. Lett. 91, 206601 (2003)

    Article  Google Scholar 

  65. Reddy, D.V.R., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109–5112 (1998)

    Article  ADS  Google Scholar 

  66. Prager, T., Schimansky-Geier, L.: Drift and diffusion in periodically driven renewal processes. J. Stat. Phys. 123, 391–413 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank DFG-Sfb 555 for financial support. The authors thank our former coauthor Dr. T. Prager who substantially contributed to elaborate the presented three-state model for stochastic excitable systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Schimansky-Geier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonhardt, H., Zaks, M.A., Falcke, M. et al. Stochastic Hierarchical Systems: Excitable Dynamics. J Biol Phys 34, 521–538 (2008). https://doi.org/10.1007/s10867-008-9112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9112-1

Keywords

Navigation