Skip to main content
Log in

Giant Glial Cell: New Insight Through Mechanism-Based Modeling

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways of the glial cell activation: (1) via IP3 production and Ca2 +  release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca2 +  channels. We suggest that the second pathway is the more significant for establishing the positive feedback in glutamate release that is critical for the self-sustained activity of the postsynaptic neuron. This mechanism differs from the mechanisms of the astrocyte-neuron signaling previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haydon, P.G.: Glia: listening and talking to the synapse. Nat. Rev. 2, 185–193 (2001)

    Article  Google Scholar 

  2. Fields, R.D., Stevens-Graham, B.: New insights into neuron–glia communication. Science 298, 556–562 (2002)

    Article  ADS  Google Scholar 

  3. Bonvento, G., Giaume, C., Lorenceau, J.: Neuron–glia interactions: from physiology to behavior. J. Physiol. 96, 167–168 (2002)

    Google Scholar 

  4. Nedergaard, M.: Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771 (1994)

    Article  ADS  Google Scholar 

  5. Wiencken, A.E., Casagrande, V.A.: Endothelial nitric oxide synthase (eNOS) in astrocytes: another source of nitric oxide in neocortex. Glia 26, 280–290 (1999)

    Article  Google Scholar 

  6. Nedergaard, M., Ransom, B., Goldman, S.A.: New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003)

    Article  Google Scholar 

  7. Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91, 268101 (2003)

    Article  ADS  Google Scholar 

  8. Postnov. D.E., Ryazanova L.S., Sosnovtseva O.V.: Functional modeling of neural-glia interaction. Biosystems 89, 84–91 (2007)

    Article  Google Scholar 

  9. Kuffler, S.W., Potter, D.D.: Glia in the leech central nervous system: physiological properties and neuron–glia relationship. J. Neurophysiol. 27, 290–320 (1964)

    Google Scholar 

  10. Nicholls, J.G., Martin, A.R., Wallace, B.G., Fuchs, P.A.: From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, 4th edn. Sinauer Associates, Sunderland MA (2001)

    Google Scholar 

  11. Postnov, D.E., Ryazanova, L.S., Mosekilde, E., Sosnovtseva, O.V.: Neural synchronization via potassium signaling. Int. J. Neural Syst. 16, 99–109 (2006)

    Article  Google Scholar 

  12. Postnov, D.E., Ryazanova, L.S., Zhirin, R.A., Mosekilde, E., Sosnovtseva, O.V.: Noise controlled synchronization in potassium coupled neural models. Int. J. Neural Syst. 17, 105–113 (2007)

    Article  Google Scholar 

  13. Coggeshall, R.E., Fawcett, D.W.: The fine structre of the central nervous system of the leech, Hirudo medicinalis, J. Neurophysiol. 27, 229–289 (1964)

    Google Scholar 

  14. Deitmer, J.W., Rose, C.R., Munch, T., Schmidt, J., Nett, W., Schneider, N.-P., Lohr, C.: Leech glial cell: functional role in a simple nervous system. Glia 28, 175–182 (1999)

    Article  Google Scholar 

  15. Dierkis, P.W., Hochstrate P., Schlue, W.R.: Distribution and functional properties of glutamate receptors in the leech central nervous system. J. Neurophysiol. 75, 2312–2321 (1996)

    Google Scholar 

  16. Hochstrate P., Piel C., Schlue, W.R.: Effect of extracellular K +  on the intracellular free Ca2 +  concentration in leech glial cells and Retzius neurons. Brain Res. 696, 231–241 (1995)

    Article  Google Scholar 

  17. Dorner, R., Ballanyi, K., Schulue, W.R.: Glutaminergic responses of neuropile glial cells and Retzius neurones in the leech central nervous system. Brain Res. 16, 111–116 (1990)

    Article  Google Scholar 

  18. Munsch, T., Deitmer, J.W.: Calcuim transients in identified leech glia cells in situ evoked by high potassium concentration and 5-hydroxytryptamine. J. Exp. Biol. 167, 251–265 (1992)

    Google Scholar 

  19. Lohr, C., Deitmer, J.W.: Intracellular Ca2 +  release mediated by metabotropic glutamate receptor activation in the leech giant glial cell. J. Exp. Biol. 200, 2565–2573 (1997)

    Google Scholar 

  20. Brune T., Deitmer, J.W.: Intracellular acidification and Ca2 +  transients in cultured rat cerebellar astrocytes evoked by glutamate agonist and noradrenaline. Glia 14, 153–161 (1995)

    Article  Google Scholar 

  21. Di Garbo, A., Barbi, M., Chillemi, S., Alloisio, S., Nobile, M.: Calcium signalling in astrocytes and modulation of neural activity. Biosystems 89, 74–83 (2007)

    Article  Google Scholar 

  22. Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S., Haydon, P.G.: Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994)

    Article  ADS  Google Scholar 

  23. Nadkarni, S., Jung, P.: Modeling synaptic transmission of the tripartite synapse. Phys. Biol. 4, 1–9 (2007)

    Article  ADS  Google Scholar 

  24. Nadkarni, S., Jung, P.: Dressed neurons: modeling neural-glia interactions. Phys. Biol. 1, 35–41 (2004)

    Article  ADS  Google Scholar 

  25. Wuttke, W.A.: Mechanism of potassium uptake in neuropile glial cell in the central nervous system of the leech. J. Neurophysiol. 63, 1089–1097 (1990)

    Google Scholar 

  26. Dietzel, I.D., Drapeau, P., Nicholls, J.G.: Voltage dependence of 5-hydroxytryptamine release at a synapse between identified leech neurons in culture. J. Physiol. 372, 192–205 (1986)

    Google Scholar 

  27. Stewart, R.R., Adams, W.B., Nicholls, J.G.: Presynaptic calcium currents and facilitation of serotonin release at synapses between cultured leech neurons. J. Exp. Biol. 144, 1–12 (1989)

    Google Scholar 

  28. Hill, B.: Ion Channels of Excitable Membrains, 3rd edn. Sinauer Associates, Sunderland MA (2001)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the European Union through the Network of Excellence BioSim (contract no. LSHB-CT-2004-005137). N. B. and A. B. acknowledge support from Lundbeck foundation. O. S. acknowledges support from Forskningsrådet for Natur og Univers (Skou stipendium). We are grateful to Ljudmila Erokhova for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Sosnovtseva.

5 Appendix

5 Appendix

Table 1 Parameters and constants for GGC model

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postnov, D.E., Ryazanova, L.S., Brazhe, N.A. et al. Giant Glial Cell: New Insight Through Mechanism-Based Modeling. J Biol Phys 34, 441–457 (2008). https://doi.org/10.1007/s10867-008-9070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9070-7

Keywords

Navigation