Skip to main content
Log in

Anesthetic-Induced Transitions by Propofol Modeled by Nonlocal Neural Populations Involving Two Neuron Types

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The present work derives the spatiotemporal field equation of neural populations considering two types of neurons. The model considers pyramidal cells, which may excite or inhibit other neurons, and GABAergic interneurons inhibiting terminal neurons. Additionally, taking into account excitatory and inhibitory synapses, the neural population obeys a vector-field equation involving nonlocal spatial interactions. The work studies the effect of the anesthetic agent propofol, which increases the decay time of inhibitory synapses. In addition, it explains the bifurcation mechanism in some detail and finds a saddle–node bifurcation subject to the propofol concentration. This bifurcation may model the transition between consciousness and nonconsciousness and vice versa during the administration of general anesthetics in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haken, H.: Brain Dynamics. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Bressloff, P., Cowan, J., Golubitsky, M., Thomas, P., Wiener, M.: What geometric visual hallucinations tell us about the visual cortex. Neural Comput. 14, 473–491 (2002)

    Article  MATH  Google Scholar 

  3. Ermentrout, G.B., Cowan, J.D.: A mathematical theory of visual hallucination patterns. Biol. Cybern. 34, 137 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Coombes, S.: Waves, bumps and patterns in neural field theories. Biol. Cybern. 93, 91–108 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Frank, T., Daffertshofer, A., Peper, C., Beek, P., Haken, H.: Towards a comprehensive theory of brain activity: coupled oscillator systems under external forces. Physica D 144, 62–86 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Wallenstein, G.V., Kelso, J.A.S., Bressler, S.L.: Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D 84, 626–634 (1995)

    Article  Google Scholar 

  7. Steyn-Ross, M., Steyn-Ross, D.: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys. Rev. E 60(6), 7299–7311 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Steyn-Ross, M., Steyn-Ross, D., Sleigh, J., Wilcocks, L.: Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex: I. A thermodynamic analogy. Phys. Rev. E 64, 011911 (2001)

    Article  ADS  Google Scholar 

  9. Baker, P., Pennefather, P., Orser, B.: Disruption of coherent oscillations in inhibitory networks with anesthetics: role of GABA-A receptor desensitization. J. Neurophysiol. 88, 282–2833 (2002)

    Article  Google Scholar 

  10. Kitamura, A., Marszalec, W., Yeh, J., Narahashi, T.: Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J. Pharmacol. 304(1), 162–171 (2002)

    Google Scholar 

  11. Rundshagen, I., Schroeder, T., Prochep, I., John, E., Kox, W.: Changes in cortical electrical activity during induction of anesthesia with thiopental/fentanyl and tracheal intubation: a quantitative elecroencephalographic analysis. Br. J. Anaesth. 92(1), 33–38 (2004)

    Article  Google Scholar 

  12. Freeman, W.: Tutorial on neurobiology: from single neurons to brain chaos. Int. J. Bifurc. Chaos 2(3), 451–482 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bojak, I., Liley, D.: Modeling the effects of anesthesia on the electroencephalogram. Phys. Rev. E 41, 041902 (2005)

    ADS  Google Scholar 

  14. Robinson, P., Rennie, C., Wright, J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56(1), 826–840 (1997)

    Article  ADS  Google Scholar 

  15. Hutt, A., Atay, F.M.: Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Physica D 203, 30–54 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Wilson, H., Cowan, J.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  ADS  Google Scholar 

  17. Abeles, M.: Corticonics. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  18. Nunez, P.: Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York (1995)

    Google Scholar 

  19. Hutt, A.: Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds. Phys. Rev. E 75, 026214 (2007)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Michael Zaks for valuable discussions and acknowledge the financial support by the Deutsche Forschungsgemeinschaft (SfB-555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Schimansky-Geier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutt, A., Schimansky-Geier, L. Anesthetic-Induced Transitions by Propofol Modeled by Nonlocal Neural Populations Involving Two Neuron Types. J Biol Phys 34, 433–440 (2008). https://doi.org/10.1007/s10867-008-9065-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9065-4

Keywords

Navigation