Skip to main content
Log in

Comparison of skeletal muscle transcriptional profiles in dairy and beef breeds bulls

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

A cDNA microarray (18 263 probes) was used for transcriptome analysis of bovine skeletal muscle (m. semitendinosus) in 12-month-old bulls of the beef breed Limousin (LIM) and the typical dairy breed Holstein-Friesian (HF, used as a reference). We aimed to identify the genes whose expression may reflect the muscle phenotype of beef bulls. A comparison of muscle transcriptional profiles revealed significant differences in expression of 393 genes between HF and LIM. We classified biological functions of 117 genes with over 2-fold differences in expression between the examined breeds. Among them, 72 genes were up-regulated and 45 genes were down-regulated in LIM vs. HF. The genes were involved in protein metabolism and modifications (22 genes), signal transduction (15), nucleoside, nucleotide and nucleic acid metabolism (13), cell cycle (9), cell structure and motility (9), developmental processes (9), intracellular protein traffic (7), cell proliferation and differentiation (6), cell adhesion (6), lipid, fatty acid and steroid metabolism (5), transport (5), and other processes. For the purpose of microarray data validation, we randomly selected 4 genes:trip12, mrps30, pycrl, andc-erbb3. Real-time RT-PCR results showed similar trends in gene expression changes as those observed in microarray studies. Basing on results of the present study, we proposed a model of the regulation of skeletal muscle growth and differentiation, with a principal role of the somatotropic pathway. It may explain at least in part the development of muscle phenotype in LIM bulls. We assume that the growth hormone directly or indirectly (through IGF-1) activates the calcium-signaling pathway with calcineurin, which stimulates myogenic regulatory factors (MRFs) and inhibits early growth response gene. The inhibition results in indirect activation of MRFs and impaired activation of TGF-beta1 and myostatin, which finally facilitates terminal muscle differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barendse W, Bunch R, Thomas M, Armitage S, Baud S, Donaldson N, 2004. TheTG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Aust J Exp Agr 44: 669–674.

    Article  CAS  Google Scholar 

  • Beauchemin VR, Thomas MG, Franke DE, Silver GA, 2006. Evaluation of DNA polymorphisms involving growth hormone relative to growth and carcass characteristics in Brahman steers. Genet Mol Res 5: 438–447.

    CAS  PubMed  Google Scholar 

  • Blachowski S, Motyl T, Grzelkowska K, Kasterka M, Orzechowski A, Interewicz B, 1994. Involvement of polyamines in epidermal growth factor (EGF), transforming growth factor (TGF)-alpha and -beta1 action on culture of L6 and fetal bovine myoblasts. Int J Biochem 26: 891–897.

    Article  CAS  PubMed  Google Scholar 

  • Borland CA, Barber MC, Travers MT, Vernon RG, 1994. Growth hormone inhibition of lipogenesis in sheep adipose tissue: requirement for gene transcription and polyamines. J Endocrinol 142: 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Budasz-Świderska M, Jank M, Motyl T, 2005. Transforming growth factor-beta1 upregulates myostatin expression in mouse C2C12 myoblasts. J Physiol Pharmacol 56 Suppl 3: 195–214.

    Google Scholar 

  • Byrne KA, Wang YH, Lehnert SA, Harper GS, Mc William SM, Bruce HL, Reverter A, 2005. Gene expression profiling of muscle tissue in Brahman steers during nutritional restriction. J Anim Sci 83: 1–12.

    CAS  PubMed  Google Scholar 

  • Casas E, White SN, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, et al. 2006. Effects of calpastatin and mu-calpain markers in beef cattle on tenderness traits. J Anim Sci 84: 520–525.

    Article  CAS  PubMed  Google Scholar 

  • Cassar-Malek I, Passelaigue F, Bernard C, Léger J, Hocquette JF, 2007. Target genes of myostatin loss-of-function in muscles of late bovine fetuses. BMC Genomics 8: 63.

    Article  PubMed  Google Scholar 

  • Chambaz Z, Scheeder MRL, Kreuzer M, Dufer P-A, 2003. Meat quality of Angus, Simmental, Charolaise, Limousin steers compared at the same level of intramuscular fat. Meat Sci 63: 491–500.

    Article  Google Scholar 

  • Coffey SG, 2007. Prospects for improving the nutritional quality of dairy and meat products. Forum Nutr 60: 183–195.

    Article  CAS  PubMed  Google Scholar 

  • Dekkers JCM, 2004. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 82: 313–328.

    Google Scholar 

  • Dvorak N, 1991. Opportunities for marketing Holstein beef. In: The Proceedings of the Holstein Beef Production Symposium. Northeast Regional Agricultural Engineering Service, Cooperative Extension, Ithaca, NY: 1–5.

    Google Scholar 

  • Dymnicki E, Oprządek J, Reklewski Z, Słoniewski K, Oprządek A, Krzyżewski J, 2001. Growth rate, feed intake and feed conversion in fattening bulls of main beef breeds kept in Poland. Anim Sci Pap Rep 19: 231–239.

    Google Scholar 

  • Flisikowski K, Oprządek J, Dymnicki E, Zwierzchowski L, 2003. New polymorphism in the bovineSTAT5 A gene and its association with meat production traits in beef and dairy cattle. Anim Sci Pap Rep 21: 147–157.

    CAS  Google Scholar 

  • Florini JR, Ewton DZ, Coolican SA, 1996. Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Rev 17: 481–517.

    CAS  Google Scholar 

  • Foulstone EJ, Savage PB, Crown AL, Holly JMP, Stewart CEH, 2003. Role of insulin-like growth factor binding protein-3 (IGFBP-3) in the differentiation of primary human adult skeletal myoblasts. J Cell Physiol 195: 70–79.

    Article  CAS  PubMed  Google Scholar 

  • Friday BB, Mitchell PO, Kegle KM, Pavlath GK, 2003. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation 71: 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhang R, Hu X, Li N, 2007. Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci 77: 36–45.

    Article  Google Scholar 

  • Glass DJ, 2005. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37: 1974–1984.

    CAS  PubMed  Google Scholar 

  • Gritli-Linde A, Bjorkman U, Holm I, Tornell J, Linde A, 1997. Effects of chronically elevated growth hormone levels on polyamine metabolism in elderly transgenic mice. Mol Cell Endocrinol 126: 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Grochowska R, Gajewska A, Snochowski M, Zwierzchowski L, 2002. Ligand-binding activity of growth hormone receptor (GH-R) in bulls of different breeds with identified GH-R genotypes. J Anim Feed Sci 11: 223–236.

    Google Scholar 

  • Grochowska R, Lundén A, Zwierzchowski L, Snochowski M, Oprządek J, 2001. Association between gene polymorphism of growth hormone and carcass traits in dairy bulls. Anim Sci 72: 441–447.

    CAS  Google Scholar 

  • Grzelkowska K, Motyl T, Blachowski S, Kasterka M, 1993. Metabolic effect of orotic acid in rat L6 myoblasts. Endocrine Regul 27: 133–138.

    CAS  Google Scholar 

  • Grzelkowska K, Motyl T, Malicka E, Ostrowski J, Trzeciak L, Filipecki M, 1995. Effect of orotic acid on TGF-beta1-induced growth inhibition of L1210 leukemic cells. Int J Hematol 61: 23–33.

    Article  CAS  PubMed  Google Scholar 

  • Grzelkowska K, Motyl T, Ostrowski J, Trzeciak L, 1995. The effect of OA on proliferation and polyamine metabolism of K 562 leukemic cells and their responsiveness to natural killer cell activity. Int J Hematol 61: 147–156.

    Article  CAS  PubMed  Google Scholar 

  • Harper GS, 1999. Trends in skeletal muscle biology and the understanding of toughness in beef. Aust J Agric Res 50: 1105–1129.

    Article  CAS  Google Scholar 

  • Hocquette JF, Renard G, Levéziel H, Picard B, Cassar-Malek I, 2006. The potential benefits of genetics and genomics to improve beef quality — a review. Anim Sci Pap Rep 24: 173–186.

    CAS  Google Scholar 

  • Hocquette JF, Lehnert S, Barendse W, Cassar-Malek I, Picard B, 2007. Recent advances in cattle functional genomics and their application to beef quality. Animal 1: 159–173.

    Article  CAS  Google Scholar 

  • Hodge C, Liao J, Stofega M, Guan K, Carter-Su C, Schwartz J, 1998. Growth hormone stimulates phosphorylation and activation of Elk-1 and expression of c-fos, egr-1 and junB through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem 273: 31327–31336.

    Article  CAS  PubMed  Google Scholar 

  • Iwaki K, Sukhatme VP, Shubeita HE, Chien KR, 1990. Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. J Biol Chem 265: 13809–13817.

    CAS  PubMed  Google Scholar 

  • Jank M, Zwierzchowski L, Siadkowska E, Budasz-Świderska M, Sadkowski T, Oprządek J, Motyl T, 2006. Polymorphism in the 5’flanking region of the myostatin gene affects myostatin and TGF-b1 expression in bovine skeletal muscle. J Anim Feed Sci 15: 381–391.

    Google Scholar 

  • Juszczuk-Kubiak E, Rosochacki j, Wicińska K, Szreder T, Sakowski T, 2004a. A novel RFLP/AluI polymorphism of the bovine calpastatin (CAST) gene and its association with selected traits of beef. Anim Sci Pap Rep 22: 195–204.

    CAS  Google Scholar 

  • Juszczuk-Kubiak E, Sakowski T, Flisikowski K, Wicińska K, Oprzadek J, Rosochacki S, 2004b. Bovine μ-calpain (CAPN1) gene: new SNP within intron 14. J Appl Genet 45: 457–460.

    PubMed  Google Scholar 

  • Klover P, Hennighausen L, 2007. Postnatal body growth is dependent on the transcription factors signal transducers and activators of transcription 5a/b in muscle: a role for autocrine/paracrine insulin-like growth factor I. Endocrinology 148: 1489–1497.

    Article  CAS  PubMed  Google Scholar 

  • Kölle S, Stojkovic M, Prelle K, Waters M, Wolf E, Sinowatz F, 2001. Growth hormone (GH)/GH receptor expression and GH-mediated effects during early bovine embryogenesis. Biol Reprod 64: 1826–1834.

    Article  PubMed  Google Scholar 

  • Kononoff PJ, Deobald HM, Stewart EL, Laycock AD, Marquess FL, 2005. The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle. J Anim Sci 83: 927–932.

    CAS  PubMed  Google Scholar 

  • Lefaucheur L, Le Dividich J, Mourot J, Monin G, Ecolan P, Krauss D, 1991. Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine. J Anim Sci 69: 2844–2854.

    CAS  PubMed  Google Scholar 

  • Lehnert SA, Reverter A, Byrne KA, Wang Y, Nattrass GS, Hudson NJ, Greenwood PL, 2007. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev Biol 16: 95.

    Article  Google Scholar 

  • Listrat A, Hocquette JF, Picard B, Ménissier F, Djiane J, Jammes H, 2005. Growth hormone receptor gene expression in the skeletal muscle of normal and double-muscled bovines during foetal development. Reprod Nutr Dev 45: 393–403.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yao J, de Belle I, Huang R-P, Adamson E, Mercola D, 1999. The transcription factor EGR-1 suppresses transformation of human fibrosarcoma HT 1080 cells by coordinated induction of transforming growth factor-beta-1, fibronectin, and plasminogen activator inhibitor-1. J Biol Chem 274: 4400–4411.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Thomas SG, Asa SL, Gonzales-Cadavid N, Bhasin S, Ezzat S, 2003. Myostatin is a skeletal muscle target of growth hormone anabolic action. J Clin Endocrinol 88: 5490–5496.

    Article  CAS  Google Scholar 

  • Lonergan SM, Ernst CW, Bishop MD, Calkins CR, Koohmaraie M, 1995. Relationship of restriction fragment length polymorphism (RFLP) at the bovine calpastatin locus to calpastatin activity and meat tenderness. J Anim Sci 73: 3608–3612.

    CAS  PubMed  Google Scholar 

  • Lucy MC, Boyd CK, Koenigsfeld AT, Okamura CS, 1998. Expression of somatotropin receptor messenger ribonucleic acid in bovine tissues. J Dairy Sci 81: 1889–1895.

    Article  CAS  PubMed  Google Scholar 

  • Maj A, Zwierzchowski L, Oprządek J, Oprządek A, Dymnicki E, 2004. Polymorphism in the 5’-noncoding region of the bovine growth hormone receptor gene and its association with meat production traits in cattle. Anim Res 53: 503–514.

    Article  CAS  Google Scholar 

  • Maj A, Zwierzchowski L, Oprządek J, Dymnicki E, 2006. Polymorphism in the 5’-noncoding region of the bovine growth hormone receptor gene and its association with meat production traits in Black-and-White cattle. Meat Sci 72: 539–544.

    Article  CAS  Google Scholar 

  • Monson F, Sanudo C, Sierra I, 2004. Influence of cattle breed and ageing time on textural meat quality. Meat Sci 80: 3077–3085.

    Google Scholar 

  • Moseley WM, Paulissen JP, Goodwin MC, Alaniz GR, Clafin WH, 1992. Recombinant bovine somatotropin improves growth performance in finishing beef steers. J Anim Sci 70: 412–425.

    CAS  PubMed  Google Scholar 

  • Motyl T, Kasterka M, Grzelkowska K, Blachowski S, Sysa P, 1993. TGF-beta1 inhibits polyamine biosynthesis in K562 leukemic cells. Ann Hematol 67: 285–288.

    Article  CAS  PubMed  Google Scholar 

  • Motyl T, Kasterka M, Grzelkowska K, Ostrowski J, Filipecki M, Malicka E, Płoszaj T, 1996. Phorbol ester (12-O-tetradecanoylphorbol 13-acetate) prevents ornithine decarboxylase inhibition and apoptosis in L1210 leukemic cells exposed to TGFbeta1. Int JBiochem Cell Biol 28: 1327–1335.

    Article  CAS  Google Scholar 

  • Mullen AM, Stapleton PC, Corcoran D, Hamill RM, White A, 2006. Understanding meat quality through the application of genomic and proteomic approaches. Meat Sci 74: 3–16.

    Article  CAS  Google Scholar 

  • Nkrumah JD, Li C, Yu J, Hansen C, Keisler DH, Moore SS, 2005. Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. J Anim Sci 83: 20–28.

    CAS  PubMed  Google Scholar 

  • Oprządek J, Dymnicki E, Oprządek A, Słoniewski K, Sakowski T, Reklewski Z, 2001. A note on the effect of breed on beef cattle the carcass traits. Anim Sci Pap Rep 19: 79–89.

    Google Scholar 

  • Oprządek J, Dymnicki E, Reklewski Z, 2007. Zmiany tempa wzrostu i składu tkankowego tuszy młodego bydła w zależnoćci od rasy [Growth rates and carcass composition of young cattle of different breeds]. Roczniki Naukowe PTZ 3: 25–31.

    Google Scholar 

  • Page BT, Casas E, Quaas RL, Thallman RM, Wheeler TL, Shackelford SD, et al. 2004. Association of markers in the bovineCAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J Anim Sci 8: 3474–3481.

    Google Scholar 

  • Płoszaj T, Motyl T, Zimowska W, Skierski J, Zwierzchowski L, 2000. Inhibition of ornithine decarboxylase by alpha-difluoromethylornithine induces apoptosis of HC11 mouse mammary epithelial cells. Amino Acids 19: 483–496.

    Article  PubMed  Google Scholar 

  • Polanski A, Kimmel M, 2007. Bioinformatics. Springer Verlag: Berlin.

    Google Scholar 

  • Potts JK, Echternkamp SE, Smith TP, Reecy JM, 2003. Characterization of gene expression in double-muscled and normal-muscled bovine embryos. Anim Genet 34: 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, et al. 2001. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biol 3: 1009–1013 doi:10.1038/ncb1 101-1009.

    Article  CAS  PubMed  Google Scholar 

  • Rosochacki S, Kubiak-Juszczuk E, Bartoń L, Sakowski T, Połoszynowicz J, Baranowski A, Matejczyk M, 2008. Preliminary observations upon relation between the G77A polymorphism inCATD gene and lysosomal proteinases activity and sensory traits of meat from bulls of three breeds. Anim Sci Pap Rep 26: 25–35.

    CAS  Google Scholar 

  • Sadkowski T, Jank M, Zwierzchowski L, Siadkowska E, Oprządek J, Motyl T, 2008. Gene expression profiling in skeletal muscle of Holstein Friesian bulls with single nucleotide polymorphism in myostatin gene 5’flanking region. J Appl Genet 49: 237–250.

    PubMed  Google Scholar 

  • Sadkowski T, Jank M, Oprządek J, Motyl T, 2006. Age-dependent changes in bovine skeletal muscle transcriptomic profile. J Physiol Pharmacol. 57: 95–110.

    PubMed  Google Scholar 

  • Salih DAM, Tripathi G, Holding C, Szestak TAM, Gonzalez MI, Carter EJ, et al. 2004. Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. PNAS 101: 4314–4319.

    Article  CAS  PubMed  Google Scholar 

  • Schenkel FS, Miller SP, Ye X, Moore SS, Nkrumah JD, Li C, et al. 2005. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J Anim Sci 83: 2009–2020.

    CAS  PubMed  Google Scholar 

  • Schenkel FS, Miller SP, Jiang Z, Mandell IB, Ye X, Li H, Wilton JW, 2006. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J Anim Sci 84: 291–299.

    CAS  PubMed  Google Scholar 

  • Schlegel ML, Bergen WG, Schroeder AL, VandeHaar MJ, Rust SR, 2006. Use of bovine somatotropin for increased skeletal and lean tissue growth of Holstein steers. J Anim Sci 84: 1176–1187.

    CAS  PubMed  Google Scholar 

  • Suchyta SP, Sipkovsky S, Kruska R, Jeffers A, McNulty A, Coussens MJ, et al. 2003. Development and testing of a high-density cDNA microarray resource for cattle. Physiol Genomics 15: 158–164.

    CAS  PubMed  Google Scholar 

  • Sudre K, Leroux C, Piétu G, Cassar-Malek I, Petit E, Listrat A, et al. 2003. Transcriptome analysis of two bovine muscles during ontogenesis. J Biochem 133: 745–756.

    Article  CAS  PubMed  Google Scholar 

  • Świtoński M, 2008. Postêpy genomiki zwierząt domowych [Progress in genomics of livestock animals]. Nauka 1: 27–43.

    Google Scholar 

  • Tatsuda K, Oka A, Iwamoto E, Kuroda Y, Takeshita H, Kataoka H, Kouno S, 2008. Relationship of the bovine growth hormone gene to carcass traits in Japanese black cattle. J Anim Breed Genet 125: 45–49.

    Article  CAS  PubMed  Google Scholar 

  • Thaller G, Kuhn C, Winter A, Ewald G, Bellmann O, Wegner J, et al. 2003. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet 34: 354–357.

    Article  CAS  PubMed  Google Scholar 

  • Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, et al. 2003. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nuc Acids Res 31: 334–341.

    Article  CAS  Google Scholar 

  • Tourtellotte WG, Keller-Peck C, Milbrandt J, Kucera J, 2001. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis. Develop Biol 232: 388–399.

    Article  CAS  PubMed  Google Scholar 

  • Van Eenennaam AL, Li J, Thallman RM, Quaas RL, Dikeman ME, Gill CA, et al. 2007. Validation of commercial DNA tests for quantitative beef quality traits. J Anim Sci 85: 891–900.

    Article  PubMed  Google Scholar 

  • Velayudhan BT, Govoni KE, Hoagland TA, Zinn SA, 2007. Growth rate and changes of the somatotropic axis in beef cattle administered exogenous bovine somatotropin beginning at two hundred, two hundred fifty, and three hundred days of age. J Anim Sci 85: 2866–2872.

    Article  CAS  PubMed  Google Scholar 

  • Velloso CP, 2008. Regulation of muscle mass by growth hormone and IGF-1. Br J Pharmacol 154: 557–568.

    Article  CAS  PubMed  Google Scholar 

  • Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW, 2002. GSK-3beta negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol 283: C545–551.

    CAS  PubMed  Google Scholar 

  • Wang YH, Byrne KA, Reverter A, Harper GS, Taniguchi M, Mc William SM, Mannen H, Oyama K, Lehnert SA, 2005. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm Genome 16: 201–210.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler TL, Shackelford SD, Casas E, Cundiff CV, Koohmaraie M, 2002. The effects of Piedmontese inheritance and myostatin genotype on the palatability of longissimus thoracis, gluteus medius, semimembranosus, and biceps femoris. J Anim Sci 79: 3069–3074.

    Google Scholar 

  • White SN, Casas E, Wheeler TL, Shackelford SD, Koohmarale M, Riley DG, et al. 2005. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle ofBos indicus, Bos taurus and crossbred descent. J Anim Sci 83: 2001–2008.

    CAS  PubMed  Google Scholar 

  • Yu SL, Chung HJ, Sang BC, Park CS, Lee JH, Yoon DH, et al. 2007. Identification of differentially expressed genes in distinct skeletal muscles in cattle, using cDNA microarray. Anim Biotechnol 18: 275–285.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Motyl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadkowski, T., Jank, M., Zwierzchowski, L. et al. Comparison of skeletal muscle transcriptional profiles in dairy and beef breeds bulls. J Appl Genet 50, 109–123 (2009). https://doi.org/10.1007/BF03195662

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195662

Keywords

Navigation