Skip to main content
Log in

Strategies for automated analysis of C. elegans locomotion

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

Automated analysis of C. elegans behaviour is a rapidly developing field, offering the possibility of behaviour-based, high-throughput drug screens and systematic phenotyping. Standard methods for parameterizing worm shapes and movements are emerging, and progress has been made towards overcoming the difficulties introduced by interactions between worms, as well as worm coiling and omega turning. Current methods have facilitated the identification of subtle phenotypes and the characterisation of roles of neurones in forward locomotion and chemotaxis, as well as the quantitative characterisation of behaviour choice and circadian patterns of activity. Given the speed with which C. elegans has been deployed in genetic screens and chemical screens, it is to be hoped that wormtrackers may eventually provide similar rapidity in assaying behavioural phenotypes. However, considerable progress must be made before this can be accomplished. In the case of genome-wide RNAi screens, for example, the presence in the worm genome of some 19,000 genes means that even the minimal user intervention in an automatic phenotyping system will be very costly. Nonetheless, recent advances have shown that drug actions on large numbers of worms can be tracked, raising hopes that high-throughput behavioural screens may soon be available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baek JH, Cosman P, Feng Z, Silver J, Schafer WR (2002) Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively. J Neurosci Methods 118:9–21

    Article  PubMed  Google Scholar 

  • Brandt R, Gergou A, Wacker I, Fath T, Hutter H (2008) A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging (in press)

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Burt E, Towers P, Sattelle D (2006) Caenorhabditis elegans in the study of SMN-interacting proteins: a role for SMI-1, an orthologue of human Gemin2 and the identification of novel components of the SMN complex. Invert Neurosci 6:145–159

    Article  PubMed  CAS  Google Scholar 

  • Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, Bargmann CI (2007) Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450:63–70

    Article  PubMed  CAS  Google Scholar 

  • Cronin CJ, Mendel JE, Mukhtar S, Kim YM, Stirbl RC, Bruck J, Sternberg PW (2005) An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet 6:5

    Article  PubMed  CAS  Google Scholar 

  • de Bono M, Maricq AV (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501

    Article  PubMed  CAS  Google Scholar 

  • Drake J, Link CD, Butterfield DA (2003) Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid [beta]-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 24:415–420

    Article  PubMed  CAS  Google Scholar 

  • Faber PW, Voisine C, King DC, Bates EA, Hart AC (2002) Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci USA 99:17131–17136

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Cronin CJ, Wittig JH, Sternberg PW, Schafer WR (2004) An imaging system for standardized quantitative analysis of C. elegans behavior. BMC Bioinformatics 5:115

    Article  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fontaine E, Burdick J, Barr A (2006) Automated tracking of multiple C. elegans. Conf Proc IEEE Eng Med Biol Soc 1:3716–3719

    Article  PubMed  Google Scholar 

  • Geng W, Cosman P, Baek JH, Berry CC, Schafer WR (2003) Quantitative classification and natural clustering of Caenorhabditis elegans behavioral phenotypes. Genetics 165:1117–1126

    PubMed  Google Scholar 

  • Hardaker LA, Singer E, Kerr R, Zhou G, Schafer WR (2001) Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. J Neurobiol 49:303–313

    Article  PubMed  CAS  Google Scholar 

  • Hoshi K, Shingai R (2006) Computer-driven automatic identification of locomotion states in Caenorhabditis elegans. J Neurosci Methods 157:355–363

    Article  PubMed  Google Scholar 

  • Huang KM, Cosman P, Schafer WR (2006) Machine vision based detection of omega bends and reversals in C. elegans. J Neurosci Methods 158:323–336

    Article  PubMed  Google Scholar 

  • Huang KM, Cosman P, Schafer WR (2007) Automated tracking of mulitple C. elegans with articulated models In Biomedical Imaging: From Nano to Macro, 2007. 4th IEEE International Symposium, pp. 1240–1243. Arlington, VA: IEEE

  • Huang K-M, Cosman P, Schafer WR (2008) Automated detection and analysis of foraging behavior in Caenorhabditis elegans. J Neurosci Methods 171:153–164

    Article  PubMed  Google Scholar 

  • Kamath RV, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  PubMed  CAS  Google Scholar 

  • Kerr RA, Schafer WR (2006) Intracellular Ca2+ imaging in C. elegans. Methods Mol Biol 351:253–264

    PubMed  CAS  Google Scholar 

  • Kindt KS, Viswanath V, Macpherson L, Quast K, Hu H, Patapoutian A, Schafer WR (2007) Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat Neurosci 10:568–577

    Article  PubMed  CAS  Google Scholar 

  • Link CD, Taft A, Kapulkin V, Duke K, Kim S, Fei Q, Wood DE, Sahagan BG (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol Aging 24:397–413

    Article  PubMed  CAS  Google Scholar 

  • Lockery SR, Lawton KJ, Doll JC, Faumont S, Coulthard SM, Thiele TR, Chronis N, McCormick KE, Goodman MB, Pruitt BL (2008) Artificial dirt: microfluidic substrates for nemotode neurobiology and behavior. J Neurophysiol 99:3136–3143

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Gabel CV, Ha HI, Zhang Y, Samuel AD (2008) Olfactory behavior of swimming C. elegans analyzed by measuring motile responses to temporal variations of odorants. J Neurophysiol 99:2617–2625

    Article  PubMed  Google Scholar 

  • Miguel-Aliaga I, Culetto E, Walker DS, Baylis HA, Sattelle DB, Davies KE (1999) The Caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability. Hum Mol Genet 8:2133–2143

    Article  PubMed  CAS  Google Scholar 

  • Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  PubMed  CAS  Google Scholar 

  • Ramot D, Johnson BE, Berry TL Jr, Carnell L, Goodman MB (2008) The parallel worm tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3:e2208

    Article  PubMed  CAS  Google Scholar 

  • Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2:791–797

    Article  PubMed  CAS  Google Scholar 

  • Roussel N, Morton CA, Finger FP, Roysam B (2007) A computational model for C. elegans locomotory behavior: application to multiworm tracking. IEEE Trans Biomed Eng 54:1786–1797

    Article  PubMed  Google Scholar 

  • Ruvinsky I, Ohler U, Burge CB, Ruvkun G (2007) Detection of broadly expressed neuronal genes in C. elegans. Dev Biol 302:617–626

    Article  PubMed  CAS  Google Scholar 

  • Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci USA 97:5750–5755

    Article  PubMed  CAS  Google Scholar 

  • Shingai R (2000) Durations and frequencies of free locomotion in wild type and GABAergic mutants of Caenorhabditis elegans. Neurosci Res 38:71–83

    Article  PubMed  CAS  Google Scholar 

  • Simonetta SH, Golombek DA (2007) An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application. J Neurosci Methods 161:273–280

    Article  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Thiele TR, Faumont S, Ezcurra M, Lockery SR, Schafer WR (2008) Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 454:114–117

    Article  PubMed  CAS  Google Scholar 

  • The C. e. S. C. (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Tsechpenakis G, Bianchi L, Metaxas D, Driscoll M (2008) A novel computational approach for simultaneous tracking and feature extraction of C. elegans populations in fluid environments. IEEE Trans Biomed Eng 55:1539–1549

    Article  PubMed  Google Scholar 

  • Tsibidis G, Tavernarakis N (2007) Nemo: a computational tool for analyzing nematode locomotion. BMC Neuroscience 8:86

    Article  PubMed  Google Scholar 

  • van Ham TJ, Thijssen KL, Breitling R, Hofstra RMW, Plasterk RHA, Nollen EAA (2008) C. elegans model identifies genetic modifiers of Π± -Synuclein inclusion formation during aging. PLoS Genet 4:e1000027

    Article  PubMed  CAS  Google Scholar 

  • Von Stetina S, Watson J, Fox R, Olszewski K, Spencer WC, Roy P, Miller D (2007) Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 8:R135

    Article  CAS  Google Scholar 

  • Wakabayashi T, Kitagawa I, Shingai R (2004) Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. Neurosci Res 50:103–111

    Article  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  PubMed  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc B-Biol Sci 314:1–340

    Article  Google Scholar 

  • Zhang F, Wang L-P, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Dr Andrew Jones for his comments on the manuscript, and to prof. Roysam for his willingness to share computer code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Buckingham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckingham, S.D., Sattelle, D.B. Strategies for automated analysis of C. elegans locomotion. Invert Neurosci 8, 121 (2008). https://doi.org/10.1007/s10158-008-0077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-008-0077-3

Keywords

Navigation