Skip to main content

Advertisement

Log in

Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Campylobacter spp. are one of the leading bacterial etiologic agents of acute human gastroenteritis among industrialized countries. Poultry are implicated as a major source of the organism for human illness; however, the factors involved with colonization of poultry gastrointestinal systems remain unclear. Genomics and proteomics analyses were used to identify differences between poor- versus robust-colonizing Campylobacter jejuni isolates, 11168(GS) and A74/C, respectively. Sequence analyses of subtracted DNA resulted in A74/C-specifc genes similar to a dimethyl sulfoxide reductase, a serine protease, polysaccharide modification proteins, and restriction modification proteins. DNA microarray analyses were performed for comparison of A74/C to the complete genome sequences published for two C. jejuni. A total of 114 genes (7.1%) were determined absent from A74/C relative to those genomes. Additionally, proteomics was completed on both soluble and membrane protein extracts from 11168(GS) and A74/C. Variation in protein expression and physical characteristics such as pI was detected between the two isolates that included the major outer membrane protein, flagella, and aconitate hydratase. Several proteins including cysteine synthase and a Ni/Fe hydrogenase were determined to be differentially present between the two isolates. Finally, DNA hybridization analyses of 19 C. jejuni isolates recovered from chickens and humans worldwide over the past 20 years were performed to determine the distribution of a subset of differentially identified gene sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebersold RH, Leavitt J, Saavedra RA, Hood LE, Kent SB (1987) Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A 84:6970–6974

    Article  PubMed  CAS  Google Scholar 

  • Ahmed IH, Manning G, Wassenaar TM, Cawthraw S, Newell DG (2002) Identification of genetic differences between two Campylobacter jejuni strains with differential colonization potentials. Microbiology 148:1203–1212

    PubMed  CAS  Google Scholar 

  • Altekruse SF, Swerdlow DL, Stern NJ (1998) Microbial food borne pathogens. Campylobacter jejuni. Vet Clin North Am Food Anim Pract 14:31–40

    PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Asano Y, Kira I, Yokozeki K (2005) Alteration of substrate specificity of aspartase by directed evolution. Biomol Eng 22:95–101

    Article  PubMed  CAS  Google Scholar 

  • Baillon ML, van Vliet AH, Ketley JM, Constantinidou C, Penn CW (1999) An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 181:4798–4804

    PubMed  CAS  Google Scholar 

  • Bjellqvist B, Pasquali C, Ravier F, Sanchez JC, Hochstrasser D (1993) A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electrophoresis 14:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Bjorkholm BM, Guruge JL, Oh JD, Syder AJ, Salama N, Guillemin K, Falkow S, Nilsson C, Falk PG, Engstrand L, Gordon JI (2002) Colonization of germ-free transgenic mice with genotyped Helicobacter pylori strains from a case-control study of gastric cancer reveals a correlation between host responses and HsdS components of type I restriction-modification systems. J Biol Chem 277:34191–34197

    Article  PubMed  CAS  Google Scholar 

  • Blaser MJ, Reller LB (1981) Campylobacter enteritis. N Engl J Med 305:1444–1452

    PubMed  CAS  Google Scholar 

  • Bokkenheuser VD, Sutter VL (1981) Campylobacter infections. In: Balows A, Hausler WJ (eds) Bacterial, mycotic and parasitic infections. 6th edn. American Public Health Association, Washington, D.C., pp 301–310

    Google Scholar 

  • Bradbury AJ, Gruer MJ, Rudd KE, Guest JR (1996) The second aconitase (AcnB) of Escherichia coli. Microbiology 142:389–400

    Article  PubMed  CAS  Google Scholar 

  • Bras AM, Chatterjee S, Wren BW, Newell DG, Ketely JM (1999) A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. J Bacteriol 181:3298–3302

    PubMed  CAS  Google Scholar 

  • Bryan F, Doyle M (1995) Health Risks and consequences of Salmonella and Campylobacter jejuni in raw poultry. J Food Prot 58:326–344

    Google Scholar 

  • Butzler JP, Skirrow MB (1979) Campylobacter enteritis. Clin Gastroenterol 8:737–765

    PubMed  CAS  Google Scholar 

  • Cao P, Cover TL (2002) Two different families of hopQ alleles in Helicobacter pylori. J Clin Microbiol 40:4504–4511

    Article  PubMed  CAS  Google Scholar 

  • Champion KM, Nishihara JC, Joly JC, Arnott D (2001) Similarity of the Escherichia coli proteome upon completion of different biopharmaceutical fermentation processes. Proteomics 1:1133–1148

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Beeston A, Bryden L, Wang G, Barton C, Cuff W, Gilmour MW, Ng LK (2007) Phylogenetic relationships of Campylobacter jejuni based on porA sequences. Can J Microbiol 53:27–38

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Dorrell N, Mangan JA, Laing KG, Hinds J, Linton D, Al-Ghusein H, Barrell BG, Parkhill J, Stoker NG, Karlyshev AV, Butcher PD, Wren BW (2001) Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 11:1706–15

    Article  PubMed  CAS  Google Scholar 

  • Eppinger M, Baar C, Raddatz G, Huson DH, Schuster SC (2004) Comparative analysis of four Campylobacterales. Nat Rev Microbiol 2:872–885

    Article  PubMed  CAS  Google Scholar 

  • Fouts DE, Mongodin EF, Mandrell RF, Miller WG, Rasko DA, Ravel J, Brinkac LM, DeBoy RT, Parker CT, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Sullivan SA, Shetty JU, Ayodeji MA, Shvartsbeyn A, Schatz MC, Badger JH, Fraser CM, Nelson KE (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3:e15

    Article  PubMed  CAS  Google Scholar 

  • Garvis SG, Tipton SL, Konkel ME (1997) Identification of a functional homolog of the Escherichia coli and Salmonella typhimurium cysM gene encoding O-acetylserine sulhydrase B in Campylobacter jejuni. Gene 185:63–67

    Article  PubMed  CAS  Google Scholar 

  • Gaynor EC, Cawthraw S, Manning G, MacKichan JK, Falkow S, Newell DG (2004) The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol 186:503–517 (Erratum in: J Bacteriol 186:8159)

    Article  PubMed  CAS  Google Scholar 

  • Goulhen F, Dé E, Pagès JM, Bolla JM (2004) Functional refolding of the Campylobacter jejuni MOMP (major outer membrane protein) porin by GroEL from the same species. Biochem J 378:851–856

    Article  PubMed  CAS  Google Scholar 

  • Gruer MJ, Guest JR (1994) Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 140:2531–2541

    PubMed  CAS  Google Scholar 

  • Gruer MJ, Artymiuk PJ, Guest JR (1997) The aconitase family: three structural variations on a common theme. Trends Biochem Sci 22:3–6

    Article  PubMed  CAS  Google Scholar 

  • Harada K, Ozaki N, Kono N, Tsuneyama K, Katayanagi K, Hiramatsu K, Nakanuma Y (2001) Frequent molecular identification of Campylobacter but not Helicobacter genus in bile and biliary epithelium in hepatolithiasis. J Pathol 193:218–223

    Article  PubMed  CAS  Google Scholar 

  • Hendrixson DR, DiRita VJ (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52:471–484

    Article  PubMed  CAS  Google Scholar 

  • Hepworth PJ, Leatherbarrow H, Hart CA, Winstanley C (2007) Use of suppression subtractive hybridisation to extend our knowledge of genome diversity in Campylobacter jejuni. BMC Genomics 8:110

    Article  PubMed  CAS  Google Scholar 

  • Hodgson AE, McBride BW, Hudson MJ, Hall G, Leach SA (1998) Experimental campylobacter infection and diarrhoea in immunodeficient mice. J Med Microbiol 47:799–809

    PubMed  CAS  Google Scholar 

  • Hofreuter D, Tsai J, Watson RO, Novik V, Altman B, Benitez M, Clark C, Perbost C, Jarvie T, Du L, Galan JE (2006) Unique features of a highly pathogenic Campylobacter jejuni strain. Infect Immun 74:4694–4707 (Erratum in: (2007) Infect Immun 75:542)

    Article  PubMed  CAS  Google Scholar 

  • Hood AM, Pearson AD, Shalamat M (1988) The extent of surface contamination of retailed chickens with Campylobacter jejuni serogroups. Epidem Inf 100:17–25

    CAS  Google Scholar 

  • Izat AL, Gardner FA (1988) Incidence of Campylobacter jejuni in processed egg products. Poult Sci 67:1431–1435

    PubMed  CAS  Google Scholar 

  • Karlyshev AV, Linton D, Gregson NA, Lastovica AJ, Wren BW (2000) Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol 35:529–541

    Article  PubMed  CAS  Google Scholar 

  • Kaijser B (1988) Campylobacter jejuni/coli. APMIS 96:283–288

    Article  PubMed  CAS  Google Scholar 

  • Karlyshev AV, Linton D, Gregson NA, Wren BW (2002) A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology 148:473–480

    PubMed  CAS  Google Scholar 

  • Kerkoven R, Enckevort FHJ, Boekhorst J, Molenaar D, Siezen RJ (2004) Visualization for genomics: the microbial genome viewer. Bioinformatics 20:1812–1814

    Article  Google Scholar 

  • Kim CC, Joyce EA, Chan K, Falkow S (2002) Improved analytical methods for microarray-based genome composition analysis. Genome Biol 3(11):research0065.1–0065.17

    Article  Google Scholar 

  • Kinde H, Genigeorgis CA, Pappaioanou M (1983) Prevalence of Campylobacter jejuni in chicken wings. Appl Environ Microbiol 45:1116–1118

    PubMed  CAS  Google Scholar 

  • Konkel ME, Garvis SG, Tipton SL, Anderson DE Jr, Cieplak W Jr (1997) Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol. Microbiol. 24:953–963

    Article  PubMed  CAS  Google Scholar 

  • Lam KM, DaMassa AJ, Morishita TY, Shivaprasad HL, Bickford AA (1992) Pathogenicity of Campylobacter jejuni for turkeys and chickens. Avian Dis 36:359–363

    Article  PubMed  CAS  Google Scholar 

  • Lahm HW, Langen H (2000) Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis 21:2105–2114

    Article  PubMed  CAS  Google Scholar 

  • Lee PS, Lee KH (2003) Escherichia coli—a model system that benefits from and contributes to the evolution of proteomics. Biotechnol Bioeng 84:801–814

    Article  PubMed  CAS  Google Scholar 

  • Maki M, Jarvinen N, Rabina J, Roos C, Maaheimo H, Renkonen R, Pirkko, Mattila (2002) Functional expression of Pseudomonas aeruginosa GDP-4-keto-6-deoxy-d-mannose reductase which synthesizes GDP-rhamnose. Eur J Biochem 269:593–601

    Article  PubMed  CAS  Google Scholar 

  • Maley F, Trimble RB, Tarentino AL, Plummer TH Jr (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180:195–204

    Article  PubMed  CAS  Google Scholar 

  • Mamelli L, Pages JM, Konkel ME, Bolla JM (2006) Expression and purification of native and truncated forms of CadF, an outer membrane protein of Campylobacter. Int J Biol Macromol 39:135–140

    Article  PubMed  CAS  Google Scholar 

  • Meinersmann RJ, Rigsby WE, Stern NJ, Kelley LC, Hill JE, Doyle MP (1991) Comparative study of colonizing and noncolonizing Campylobacter jejuni. Am J Vet Res 52:1518–1522

    PubMed  CAS  Google Scholar 

  • Meinersmann RJ, Helsel LO, Fields PI, Hiett KL (1997) Discrimination of Campylobacter jejuni by fla gene sequencing. J Clin Microbiol 33:2810–2814

    Google Scholar 

  • Nachamkin I, Yang XH, Stern NJ (1993) Role of Campylobacter jejuni flagellin as colonization factors for three-day-old chicks; analysis with flagellar mutants. Appl Environ Microbiol 59:1269–1273

    PubMed  CAS  Google Scholar 

  • Naikare H, Palyada K, Panciera R, Marlow D, Stintzi A (2006) Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun 74:5433–5444

    Article  PubMed  CAS  Google Scholar 

  • Newell DG, McBride H, Pearson AD (1984) The identification of outer membrane proteins and flagella of Campylobacter jejuni. J Gen Microbiol 130:1201–1208

    PubMed  CAS  Google Scholar 

  • O’Farrell PH (2007) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  CAS  Google Scholar 

  • Oyarzabal OA, Rad R, Backert S (2007) Conjugative transfer of chromosomally encoded antibiotic resistance from Helicobacter pylori to Campylobacter jejuni. J Clin Microbiol 45:402–408

    Article  PubMed  CAS  Google Scholar 

  • Palyada K, Threadgill D, Stintzi A (2004) Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186:4714–4729

    Article  PubMed  CAS  Google Scholar 

  • Park CE, Stankiewicz ZK, Lovett J, Hunt J (1981) Incidence of Campylobacter jejuni in fresh eviscerated whole market chickens. Can J Microbiol 27:841–842

    PubMed  CAS  Google Scholar 

  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwill T, Holroyd S, Jagels K, Karlshev A, Moule S, Pallen MJ, Penn CW, Quail M, Rajandream MA, Rutherford KM, VanVlent A, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668

    Article  PubMed  CAS  Google Scholar 

  • Pearson BM, Pin C, Wright J, I'Anson K, Humphrey T, Wells JM (2003) Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett 554:224–230

    Article  PubMed  CAS  Google Scholar 

  • Pei Z, Blaser MJ (1993) PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J Biol Chem 268:18717–18725

    PubMed  CAS  Google Scholar 

  • Pickett CL, Pesci EC, Cottle DL, Russell G, Erdem AN, Zeytin H (1996) Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter spp. cdtB gene. Infect Immun 64:2070–2078

    PubMed  CAS  Google Scholar 

  • Plummer TH Jr, Tarentino AL (1991) Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology 1:257–263

    Article  PubMed  CAS  Google Scholar 

  • Poly F, Threadgill D, Stintzi A (2004) Identification of Campylobacter jejuni ATCC 43431-specific genes by whole microbial genome comparisons. J Bacteriol 186:4781–4795

    Article  PubMed  CAS  Google Scholar 

  • Poly F, Threadgill D, Stintzi A (2005) Genomic diversity in Campylobacter jejuni: identification of C. jejuni 81-176-specific genes. J Clin Microbiol 43:2330–2338

    Article  PubMed  CAS  Google Scholar 

  • Poly F, Read T, Tribble DR, Baqar S, Lorenzo M, Guerry P (2007) Genome sequence of a clinical isolate of Campylobacter jejuni from Thailand. Infect Immun 75:3425–3433

    Article  PubMed  CAS  Google Scholar 

  • Price EP, Huygens F, Giffard PM (2006) Fingerprinting of Campylobacter jejuni by using resolution-optimized binary gene targets derived from comparative genome hybridization studies. Appl Environ Microbiol 72:7793–803

    Article  PubMed  CAS  Google Scholar 

  • Pumbwe L, Randall LP, Woodward MJ, Piddock LJ (2004) Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple-antibiotic-resistant Campylobacter jejuni. J Antimicrob Chemother 54:341–347

    Article  PubMed  CAS  Google Scholar 

  • Purdy D, Cawthraw S, Dickinson JH, Newell DG, Parks SF (1999) Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonization. Appl Environ Microbiol 65:2540–2546

    PubMed  CAS  Google Scholar 

  • Rosef O, Gondroson B, Kapperud G (1984) Campylobacter jejuni and Campylobacter coli as surface contaminants of fresh and frozen poultry carcasses. Int J Food Microbiol 1:205–215

    Article  Google Scholar 

  • Seal BS, Hiett KL, Kuntz RL, Woolsey R, Schegg KM, Ard M, Stintzi A (2007) Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni. J Proteome Res 6:4582–4591

    Article  PubMed  CAS  Google Scholar 

  • Skirrow MB (1991) Epidemiology of Campylobacter enteritis. Int J Food Microbiol 12:9–16

    Article  PubMed  CAS  Google Scholar 

  • Slutsker L, Altekruse SF, Swerdlow DL (1998) Foodborne diseases. Emerging pathogens and trends. Infect Dis Clin North Am 12:199–216

    Article  PubMed  CAS  Google Scholar 

  • Stern NJ, Bailey JS, Blankenship LC, Cox NA, McHan F (1988) Colonization characteristics of Campylobacter jejuni in chick ceca. Avian Dis 32:330–334

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A (2003) Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol 185:2009–2016

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Marlow D, Palyada K, Naikare H, Panciera R, Whitworth L, Clarke C (2005) Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun 73:1797–1810

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1988) PAUP*: Phylogenetic analysis using parsimony and other methods, version 4.0. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tang Y, Guest JR, Artymiuk PJ, Read RC, Green J (2004) Post-transcriptional regulation of bacterial motility by aconitase proteins. Mol Microbiol 51:1817–26

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Guest JR, Artymiuk PJ, Green J (2005) Switching aconitase B between catalytic and regulatory modes involves iron-dependent dimer formation. Mol Microbiol 56:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Tauxe RV (1992) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In: Nachamkin I, Blaser MJ, Thompkins LS (eds) Campylobacter jejuni: Current status and future trends. 1st edn. American Society for Microbiology, Washington, D.C., pp 9–19

    Google Scholar 

  • Taylor DE (1992) Genetics of Campylobacter and Helicobacter. Annu Rev Microbiol 46:35–64

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–80

    Article  PubMed  CAS  Google Scholar 

  • Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  PubMed  CAS  Google Scholar 

  • Tyagi R, Duquerroy S, Navaza J, Guddat LW, Duggleby RG (2005) The crystal structure of a bacterial class II ketol-acid reductoisomerase: domain conservation and evolution. Protein Sci 14:3089–3100

    Article  PubMed  CAS  Google Scholar 

  • van Vliet AH, Baillon ML, Penn CW, Ketley JM (1999) Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol 181:6371–6376

    PubMed  Google Scholar 

  • Velayudhan J, Kelly (2002) DJ Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148:685–694

    PubMed  CAS  Google Scholar 

  • Walker RI, Caldwell MB, Lee EC, Guerry P, Trust TJ, Ruiz-Palacios GM (1986) Pathophysiology of Campylobacter enteritis. Micrbiol Rev 50:81–94

    CAS  Google Scholar 

  • Wassenaar TM, van der Zeijst B, Ayling R, Newell DG (1993) Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J GenMicrobiol 139:1171–1175

    CAS  Google Scholar 

  • Ziprin RL, Young CR, Stanker LH, Hume ME, Konkel ME (1999) The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectin-binding protein. Avian Dis 43:586–589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Agricultural Research Service ARS, USDA CRIS project no. 6612-3200-055-00D and NIH-AI055612. Appreciation is extended to Ms. Marie Maier for excellent technical assistance at PMSRU, RRC, ARS, USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelli L. Hiett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

C. jejuni A74/C gene sequences absent from NCTC11168(GS) as determined by suppressive subtraction hybridization analyses (DOC 312 KB)

ESM Table 2

C. jejuni NCTC11168(GS) gene sequences absent from A74/C as determined by DNA microarray hybridization analyses (DOC 162 KB)

ESM Table 3

Unique C. jejuni RM1221 gene sequences relative to NCTC11168(GS) also present in A74/C as determined by DNA microarray hybridization analyses (DOC 51 KB)

ESM Table 4

Proteins identified as variable between C. jejuni A74/C and 11168(GS) by 2D gel electrophoresis (DOC 83.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiett, K.L., Stintzi, A., Andacht, T.M. et al. Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine. Funct Integr Genomics 8, 407–420 (2008). https://doi.org/10.1007/s10142-008-0087-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0087-6

Keywords

Navigation