Skip to main content

Advertisement

Log in

On a Multiphase Multicomponent Model of Biofilm Growth

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Biofilms are formed when free-floating bacteria attach to a surface and secrete polysaccharide to form an extracellular polymeric matrix (EPS). A general model of biofilm growth needs to include the bacteria, the EPS, and the solvent within the biofilm region Ω(t), and the solvent in the surrounding region D(t). The interface between the two regions, Γ(t), is a free boundary. In this paper, we consider a mathematical model that consists of a Stokes equation for the EPS with bacteria attached to it, a Stokes equation for the solvent in Ω(t) and another for the solvent in D(t). The volume fraction of the EPS is another unknown satisfying a reaction-diffusion equation. The entire system is coupled nonlinearly within Ω(t) and across the free surface Γ(t). We prove the existence and uniqueness of a solution, with a smooth surface Γ(t), for a small time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. http://grants.nih.gov/grants/guide/pa-files/pa-07-288.html. Accessed 10 Aug 2012

  2. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borlee B.R., Goldman A.D., Murakami K., Samudrala R., Wozniak D.J., Parsek M.R.: Pseudomonas aeruginosa uses a cyclic-di-gmp-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75(4), 827–842 (2010)

    Article  Google Scholar 

  4. Byrd, M.S., Sadovskaya, I., Vinogradov, E., Lu, H., Sprinkle, A.B., Richardson, S.H., Ma, L., Ralston, B., Parsek, M.R., Anderson, E.M., Lam, J.S., Wozniak, D.J.: Genetic and biochemical analyses of the Pseudomonas aeruginosa psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in psl and lps production. Mol. Microbiol. 73(4), 622–638 (2009). doi:10.1111/j.1365-2958.2009.06795.x

    Google Scholar 

  5. Chen, X., Friedman, A.: A free boundary problem for an elliptic-hyperbolic system: An application to tumor growth. SIAM J. Math. Anal. 35(4), 974–986 (2003). doi:10.1137/S0036141002418388. http://link.aip.org/link/?SJM/35/974/1

  6. Cogan N.G., Keener J.P.: The role of the biofilm matrix in structural development. Math. Med. Biol. 21(2), 147–166 (2004)

    Article  MATH  Google Scholar 

  7. DiBenedetto E., Elliott C.M., Friedman A.: The free boundary of a flow in a porous body heated from its boundary. Nonlinear Anal.: TMA. 10, 879–900 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. DiBenedetto E., Friedman A.: Conduction–convection problems with change of phase. J. Differ. Equ. 62, 129–185 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. Doi M.: Introduction to polymer physics. Oxford University Press, USA (1996)

    Google Scholar 

  10. Drew D.A., Passman S.L.: Theory of multicomponent fluids. Springer, New York (1999)

    Google Scholar 

  11. Flemming H., Wingender J.: The biofilm matrix. Nat. Rev. Microbiol. 8(9), 623–633 (2010)

    Google Scholar 

  12. Friedman A.: Partial differential equations. Holt, Rinehart and Winston (1969)

    MATH  Google Scholar 

  13. Friedman A.: A free boundary problem for a coupled system of elliptic, hyperbolic, and stokes equations modeling tumor growth. Interfaces Free Boundaries. 8(2), 247–261 (2006)

    Article  MATH  Google Scholar 

  14. Friedman A.: A multiscale tumor model. Interfaces Free Boundaries. 10(2), 245–262 (2008)

    Article  MATH  Google Scholar 

  15. Friedman A.: Free boundary problems associated with multiscale tumor models. Math. Model. Nat. Phenom. 4(3), 134–155 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Friedman A., Hu B.: Bifurcation for a free boundary problem modeling tumor growth by stokes equation. SIAM J. Math. Anal. 39(1), 174–194 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Friedman A., Hu B.: Bifurcation from stability to instability for a free boundary problem modeling tumor growth by stokes equation. J. Math. Anal. Appl. 327(1), 643–664 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Friedman, A., Hu, B., Xue, C.: A three dimensional model of chronic wound healing: analysis and computation. DCDS-B. 17(8) (2012)

  19. Friedman A., Reitich F.: Quasi-static motion of a capillary drop, ii: the three-dimensional case. J. Differ. Equ. 186(2), 509–557 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Friedman A., Reitich F.: Quasistatic motion of a capillary drop i. the two-dimensional case. J. Differ. Equ. 178(1), 212–263 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Günther, M., Prokert, G.: Existence results for the quasistationary motion of a free capillary liquid drop. NASA (19980005201) 1996

  22. Keener J., Sircar S., Fogelson A.: Kinetics of swelling gels. SIAM J. Appl. Math. 71(3), 854–875 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kilty J.: The Lp Dirichlet problem for the stokes system on lipschitz domains. Indiana University Math. J. 58, 1219–1234 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Kim Y., Lawler S., Nowicki M., Chiocca E., Friedman A.: A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. J. Theor. Biol. 260(3), 359–371 (2009)

    Article  MathSciNet  Google Scholar 

  25. Klapper I., Dockery J.: Mathematical description of microbial biofilms. SIAM Rev. 52(2), 221 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lieberman G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Company, River Edge (1996)

    Book  MATH  Google Scholar 

  27. Ma, L., Conover, M., Lu, H., Parsek, M.R., Bayles, K., Wozniak, D.J.: Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 5(3), e1000,354 (2009). doi:10.1371/journal.ppat.1000354

  28. Ma L., Wang S., Wang D., Parsek M., Wozniak D.: The roles of biofilm matrix polysaccharide psl in mucoid pseudomonas aeruginosa biofilms. FEMS Immunol. Med. Microbiol. 65, 377–380 (2012)

    Article  Google Scholar 

  29. Maz’ya V., Rossmann J.: Schauder estimates for solutions to a mixed boundary value problem for the stokes system in polyhedral domains. Math. Methods Appl. Sci. 29, 965–1017 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Maz’ya V., Rossmann J.: Lp-estimates of solutions tomixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280, 751–793 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Maz’ya V., Rossmann J.: Lp estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Mathematische Nachrichten. 280(7), 751–793 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Osada, Y., Kajiwara, K., Ishida, H.: Gels handbook, Vol. 1. Academic Press 2001, San Diego

  33. Prokert G.: On the existence of solutions in plane quasistationary stokes flow driven by surface tension. Eur. J. Appl. Math. 6(5), 539 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ryder C., Byrd M., Wozniak D.J.: Role of polysaccharides in pseudomonas aeruginosa biofilm development. Curr. Opin. Microbiol. 10(6), 644–648 (2007)

    Article  Google Scholar 

  35. Selvadurai, A.: Partial Differential Equations in Mechanics: Fundamentals, Laplace’s equation, diffusion equation, wave equation, Vol. 1. Springer, New York 2000

  36. Solonnikov V.: On the evolution of an isolated volume of viscous incompressible capillary fluid for large values of time. Vestnik Leningrad University Ser. I. 3, 49–55 (1987)

    MathSciNet  Google Scholar 

  37. Solonnikov, V.: On quasistationary approximation in the problem of motion of a capillary drop. In: Progress in Nonlinear Differential Equations and Their Applications, Vol. 35, pp. 643–672 (1999)

  38. Solonnikov, V.: On the quasistationary approximation in the problem of evolution of an isolated liquid mass. In: Proceedings of International Conference on: Free Boundary Problems, Theory and Applications, vol. 1, p. 327. Gakkotosho, 2000

  39. Solonnikov V.: Lp.-estimates for solutions to the initial boundary-value problem for the generalized stokes system in a bounded domain. J. Math. Sci. 105, 2448–2484 (2001)

    Article  MathSciNet  Google Scholar 

  40. Solonnikov V.: Estimates of solutions of the second initial-boundary problem for the stokes system in the spaces of functions having hölder continuous derivatives with respect to spatial variables. J. Math. Sci. 109, 1997–2017 (2002)

    Article  MathSciNet  Google Scholar 

  41. Solonnikov, V.: On schauder estimates for the evolution generalized stokes problem. In: Hyperbolic Problems and Regularity Questions, Trends in Mathematics, pp. 197–205. Birkhäuser, Basel (2007)

  42. Solonnikov V.: Weighted schauder estimates for evolution stokes probelm. Annali dell’Universitá di Ferrara. 52, 137–172 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Temam R.: Navier-Stokes equations: theory and numerical analysis, 2nd edn. North-Holland, Amsterdam (1979)

    Google Scholar 

  44. Wang Q., Zhang T.: Review of mathematical models for biofilms. Solid State Commun. 150(21–22), 1009–1022 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Xue.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, A., Hu, B. & Xue, C. On a Multiphase Multicomponent Model of Biofilm Growth. Arch Rational Mech Anal 211, 257–300 (2014). https://doi.org/10.1007/s00205-013-0665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0665-1

Keywords

Navigation