Skip to main content
Log in

A new approach to decoupling of bacterial adhesion energies measured by AFM into specific and nonspecific components

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A new method to decoupling of bacterial interactions measured by atomic force microscopy (AFM) into specific and nonspecific components is proposed. The new method is based on computing the areas under the approach and retraction curves. To test the efficacy of the new method, AFM was used to probe the repulsion and adhesion energies present between Listeria monocytogenes cells cultured at five pH values (5, 6, 7, 8, and 9) and silicon nitride (Si3N4). Overall adhesion energy was then decoupled into its specific and nonspecific components using the new method as well as using Poisson statistical approach. Poisson statistical method represents the most commonly used approach to decouple bacterial interactions into their components. For all pH conditions investigated, specific energies dominated the adhesion, and a transition in adhesion and repulsion energies for cells cultured at pH 7 was observed. When compared, the differences in the specific and nonspecific energies obtained using Poisson analysis and the new method were on average 2.2 % and 6.7 %, respectively. The relatively close energies obtained using the two approaches demonstrate the efficacy of the new method as an alternative way to decouple adhesion energies into their specific and nonspecific components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gristina AG, Naylor P, Myrvik Q (1988) Infections from biomaterials and implants: a race for the surface. Med Prog Technol 14:205–224

    Google Scholar 

  2. Bushnak IA, Labeed FH, Sear RP, Keddie JL (2010) Adhesion of microorganisms to bovine submaxillary mucin coatings: effect of coating deposition conditions. Biofouling 26:387–397

    Article  CAS  Google Scholar 

  3. Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria–material interactions. Eur Cells & Mater 8:37–57

    CAS  Google Scholar 

  4. van Oss CJ (1989) Energetics of cell–cell and cell–biopolymer interactions. Cell Biophys 14:1–16

    Google Scholar 

  5. Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces I. Role of asperity geometry. J Colloid Interface Sci 232:10–16

    Article  CAS  Google Scholar 

  6. Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces II. Measurement and comparison with theory. J Colloid Interface Sci 232:17–24

    Article  CAS  Google Scholar 

  7. Abu-Lail NI, Camesano TA (2008) Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by poisson statistical analysis. Langmuir 24:4420–4420

    Article  CAS  Google Scholar 

  8. Derjaguin B (1934) Untersuchungen über die reibung und adhäsion, iv. Kolloid-Zeitschrift Kolloid-Zeitschrift 69:155–164

    Article  Google Scholar 

  9. Verwey EJW, Overbeek JTG, Nes KV (1948) Theory of the stability of lyophobic colloids; the interaction of sol particles having an electric double layer. Elsevier Pub. Co, New York

    Google Scholar 

  10. Ohshima H (1995) Electrophoresis of soft particles. Adv Colloid Interface Sci 62:189–235

    Article  CAS  Google Scholar 

  11. Sharma PK, Rao KH (2003) Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: surface thermodynamics and extended DLVO theory. Colloids Surf B-Biointerfaces 29:21–38

    Article  CAS  Google Scholar 

  12. Park BJ, Haines T, Abu-Lail NI (2009) A correlation between the virulence and the adhesion of Listeria monocytogenes to silicon nitride: an atomic force microscopy study. Colloids Surf B: Biointerfaces 73:237–243

    Article  CAS  Google Scholar 

  13. Han T, Williams JM, Beebe TP Jr (1995) Chemical bonds studied with functionalized atomic force microscopy tips. Anal Chim Acta 307:365–376

    Article  CAS  Google Scholar 

  14. Abu-Lail NI, Camesano TA (2006) Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by Poisson statistical analysis. Langmuir 22:7296–7301

    Article  CAS  Google Scholar 

  15. van der Mei HC, de Vries J, Busscher HJ (2010) Weibull analyses of bacterial interaction forces measured using AFM. Colloids Surf B: Biointerfaces 78:372–375

    Article  Google Scholar 

  16. Gordesli FP, Abu-Lail NI (2012) Combined poisson and soft-particle DLVO analysis of the specific and nonspecific adhesion forces measured between L. monocytogenes grown at various temperatures and silicon nitride. Environ Sci Technol 46:10089–10098

    CAS  Google Scholar 

  17. Williams JM, Han T, Beebe TP (1996) Determination of single-bond forces from contact force variances in atomic force microscopy. Langmuir 12:1291–1295

    Article  CAS  Google Scholar 

  18. Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292

    Article  CAS  Google Scholar 

  19. Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, Vijila HM (2007) Listeria-review of epidemiology and pathogenesis. J Microbiol Immunol Infect 40:4–13

    CAS  Google Scholar 

  20. Nappi R, Bozzetta E, Serra R, Grattarola C, Decastelli L, Florio C, Caramelli M (2005) Molecular characterization of Listeria monocytogenes strains associated with outbreaks of listeriosis in humans and ruminants and food products by serotyping and automated ribotyping. Vet Res Commun 29:249–252

    Article  Google Scholar 

  21. Mafu AA, Plumety C, Deschênes L, Goulet J (2011) Adhesion of pathogenic bacteria to food contact surfaces: influence of pH of culture. Int J Microbiol 2011:1–10

    Article  Google Scholar 

  22. Mafu AA, Roy D, Goulet J, Magny P (1990) Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. J Food Prot 53:742–746

    CAS  Google Scholar 

  23. Tresse O, Lebret V, Garmyn D, Dussurget O (2009) The impact of growth history and flagellation on the adhesion of various Listeria monocytogenes strains to polystyrene. Can J Microbiol 55:189–196

    Article  CAS  Google Scholar 

  24. Bierne H, Cossart P (2007) Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 71:377–397

    Article  CAS  Google Scholar 

  25. Ryser ET, Arimi SM, Donnelly CW (1997) Effects of pH on distribution of Listeria ribotypes in corn, hay, and grass silage. Appl Environ Microbiol 63:3695–3697

    CAS  Google Scholar 

  26. Doktycz MJ, Sullivan CJ, Hoyt PR, Pelletier DA, Wu S, Allison DP (2003) AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 97:209–216

    Article  CAS  Google Scholar 

  27. Hutter JL, Bechhoefer J (1993) Calibration of atomic force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  CAS  Google Scholar 

  28. Park BJ, Abu-Lail NI (2011) Atomic force microscopy investigations of heterogeneities in the adhesion energies measured between pathogenic and non-pathogenic Listeria species and silicon nitride as they correlate to virulence and adherence. Biofouling 27:543–559

    Article  CAS  Google Scholar 

  29. Camesano TA, Abu-Lail NI (2002) Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis. Biomacromolecules 3:661–667

    Article  CAS  Google Scholar 

  30. Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, New York

    Google Scholar 

  31. Park BJ, Abu-Lail NI (2011) The role of the pH conditions of growth on the bioadhesion of individual and lawns of pathogenic Listeria monocytogenes cells. J Colloid Interface Sci 358:611–620

    Article  CAS  Google Scholar 

  32. Cox MG (2007) The area under a curve specified by measured values. Metrologia 44:365–378

    Article  Google Scholar 

  33. Chen Y, Busscher HJ, van der Mei HC, Norde W (2011) Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy. Appl Environ Microbiol 77:5065–5070

    Article  CAS  Google Scholar 

  34. Barlow R (1989) Statistics: a guide to the use of statistical methods in the physical sciences. Wiley, New York

    Google Scholar 

  35. Hayashi H, Tsuneda S, Hirata A, Sasaki H (2001) Soft particle analysis of bacterial cells and its interpretation of cell adhesion behaviors in terms of DLVO theory. Colloids Surf B Biointerfaces 22:149–157

    Article  CAS  Google Scholar 

  36. Abu-Lail NI, Camesano TA (2003) Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida kt2442. Biomacromolecules 4:1000–1012

    Article  CAS  Google Scholar 

  37. Azeredo J, Visser J, Oliveira R (1999) Exopolymers in bacterial adhesion: interpretation in terms of DLVO and xDLVO theories. Colloids Surf B-Biointerfaces 14:141–148

    Article  CAS  Google Scholar 

  38. Bostrom M, Williams DRM, Ninham BW (2001) Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87:168103-1–168103-4

    Article  Google Scholar 

  39. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1999) DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids Surf B-Biointerfaces 14:179–195

    Article  CAS  Google Scholar 

  40. Busscher HJ, Weerkamp AH (1987) Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol Lett 46:165–173

    Article  CAS  Google Scholar 

  41. Heinisch R, Rogowski A, Schutt E (1994) The first law of thermodynamics. Forsch Ingenieurwes Eng Res 60:29–35

    Article  CAS  Google Scholar 

  42. Lo YS, Huefner ND, Chan WS, Stevens F, Harris JM, Beebe TP (1999) Specific interactions between biotin and avidin studied by atomic force microscopy using the Poisson statistical analysis method. Langmuir 15:1373–1382

    Article  CAS  Google Scholar 

  43. Lo YS, Zhu YJ, Beebe TP (2001) Loading-rate dependence of individual ligand-receptor bond-rupture forces studied by atomic force microscopy. Langmuir 17:3741–3748

    Article  CAS  Google Scholar 

  44. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  45. Hodge JE, Hofreiter BT (1962) In: Whistler RL, Be Miller JN (eds) Methods in carbohydrate chemistry. Academic Press, New York

    Google Scholar 

  46. Gordesli FP, Abu-Lail NI (2012) The role of growth temperature in the adhesion and mechanics of pathogenic L. monocytogenes: an AFM study. Langmuir 28:1360–1373

    Article  CAS  Google Scholar 

  47. Tresse O, Lebret V, Benezech T, Faille C (2006) Comparative evaluation of adhesion, surface properties, and surface protein composition of Listeria monocytogenes strains after cultivation at constant ph of 5 and 7. J Appl Microbiol 101:53–62

    Article  CAS  Google Scholar 

  48. Conte MP, Petrone G, Di Biase AM, Longhi C, Penta M, Tinari A, Superti F, Fabozzi G, Visca P, Seganti L (2002) Effect of acid adaptation on the fate of Listeria monocytogenes in thp-1 human macrophages activated by gamma interferon. Infect Immun 70:4369–4378

    Article  CAS  Google Scholar 

  49. Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Reports 34:1–104

    Article  CAS  Google Scholar 

  50. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  Google Scholar 

  51. Eugster MR, Loessner MJ (2011) Rapid analysis of Listeria monocytogenes cell wall teichoic acid carbohydrates by ESI-MS/MS. PLoS One 6:1–7

    Article  Google Scholar 

  52. Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, Pier G, Warren HS, Whitesides GM (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17:1225–1233

    Article  CAS  Google Scholar 

  53. Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    Article  CAS  Google Scholar 

  54. McClaine JW, Ford RM (2002) Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber. Biotechnol Bioeng 78:179–189

    Article  CAS  Google Scholar 

  55. Mei L, van der Mei HC, Ren YJ, Norde W, Busscher HJ (2009) Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film. Langmuir 25:6227–6231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Josue Orellana for his MATLAB program used in computing the areas under the AFM retraction and approach curves. We would like to thank Christy Hou for her help in data analysis. We would like to thank the National Institutes of Health (NIH) grants 1R03AI077590–01A1 and 5R03AI077590–02 for financial support of this work. We would like to thank the two unanimous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehal I. Abu-Lail.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskhan, A.O., Abu-Lail, N.I. A new approach to decoupling of bacterial adhesion energies measured by AFM into specific and nonspecific components. Colloid Polym Sci 292, 343–353 (2014). https://doi.org/10.1007/s00396-013-3017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3017-7

Keywords

Navigation