Skip to main content
Log in

A reduced-order model for whole-chip thermal analysis of microfluidic lab-on-a-chip systems

  • Research paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper presents a Krylov subspace projection-based reduced-order model (ROM) for whole microfluidic chip thermal analysis, including conjugate heat transfer. Two key steps in the reduced-order modeling procedure are described in detail: (1) the acquisition of a 3D full-scale computational model in the state-space form to capture the dynamic thermal behavior of the entire microfluidic chip; and (2) the model order reduction using the block Arnoldi algorithm to markedly lower the dimension of the full-scale model. Case studies using practically relevant thermal microfluidic chip are undertaken to establish the capability and to evaluate the computational performance of the reduced-order modeling technique. The ROM is compared against the full-scale model and exhibits good agreement in spatiotemporal thermal profiles (<0.5 % relative error in pertinent time scales) and over three-orders-of-magnitude acceleration in computational speed. The salient model reusability and real-time simulation capability render it amenable for operational optimization and in-line thermal control and management of microfluidic systems and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Antoulas AC (2005) An overview of approximation methods for large-scale dynamical systems. Annu Rev Control 29(2):181–190

    Article  Google Scholar 

  • Aurouz PA, Lossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74(12):2637–2652

    Article  Google Scholar 

  • Bechtold T, Rudnyi EB, Korvink JG, Graf M, Hierlemann A (2005) Connecting heat transfer macromodels for array MEMS structures. J Micromech Microeng 15:1205

    Article  Google Scholar 

  • Erickson D, Sinton D, Li D (2003) Joule heating and heat transfer in poly (dimethylsiloxane) microfluidic systems. Lab Chip 3(3):141–149

    Article  Google Scholar 

  • Gui L, Ren CL (2008) Analytical and numerical study of joule heating effects on electrokinetically pumped continuous flow PCR chips. Langmuir 24(6):2938–2946

    Article  Google Scholar 

  • Hao Q (2004) Analytical heat-transfer modeling of multilayered microdevices. J Micromech Microeng 14:914–926

    Article  Google Scholar 

  • Lee HW, Arunasalam P, Laratta WP, Seetharamu KN, Azid IA (2007) Neuro-genetic optimization of temperature control for a continuous flow polymerase chain reaction microdevice. J Biomech Eng 129:540–547

    Article  Google Scholar 

  • Mao H, Yang T, Cremer PS (2002) A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J Am Chem Soc 124(16):4432–4435

    Article  Google Scholar 

  • Odabasioglu A, Celik M, Pileggi LT (1998) PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Trans Comput Aided Des Integr Circuits Syst 17(8):645–654

    Article  Google Scholar 

  • Qiao R, Aluru NR (2003) Transient analysis of electro-osmotic transport by a reduced-order modelling approach. Int J Numer Meth Eng 56(7):1023–1050

    Article  MATH  Google Scholar 

  • Reyes DR, Lossifidis D, Auroux P-A, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  Google Scholar 

  • Rudnyi EB, Korvink JG (2002) Review: automatic model reduction for transient simulation of MEMS-based devices. Sensors Update 11(1):3–33

    Article  Google Scholar 

  • Sikanen T, Zwinger T, Tuomikoski S, Franssila S, Lehtiniemi R, Fager CM, Kotiaho T, Pursula A (2008) Temperature modeling and measurement of an electrokinetic separation chip. Microfluid Nanofluid 5(4):479–491

    Article  Google Scholar 

  • Yang YJJ, Kuo CW (2008) Generating scalable and modular macromodels for microchannels using the Galerkin-based technique. IEEE Trans Comput Aided Design Integr Circuits Syst 27(9):1545–1554

    Article  Google Scholar 

  • Yang YJ, Shen KY (2005) Nonlinear heat-transfer macromodeling for MEMS thermal devices. J Micromech Microeng 15(2):408–418

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored by NIH/NHGRI under Grant Number 5R44HG004290-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Song, H. & Pant, K. A reduced-order model for whole-chip thermal analysis of microfluidic lab-on-a-chip systems. Microfluid Nanofluid 16, 369–380 (2014). https://doi.org/10.1007/s10404-013-1210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1210-0

Keywords

Navigation