1932

Abstract

We review nondestructive techniques for measuring internal and external quality attributes of fruit and vegetables, such as color, size and shape, flavor, texture, and absence of defects. The different techniques are organized according to their physical measurement principle. We first describe each technique and then list some examples. As many of these techniques rely on mathematical models and particular data processing methods, we discuss these where needed. We pay particular attention to techniques that can be implemented online in grading lines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030713-092410
2014-02-28
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/food/5/1/annurev-food-030713-092410.html?itemId=/content/journals/10.1146/annurev-food-030713-092410&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott JA, Bachman GS, Childers RF, Fitzgerald JV, Matusik FJ. 1968. Sonic technique for measuring texture of fruits and vegetables. Food Techol. 22:635–46 [Google Scholar]
  2. Abbott JA, Liljedahl LA. 1994. Relationship of sonic resonant frequency to compression tests and Magness–Taylor firmness of apples during refrigerated storage. Trans. ASABE 37:1211–15 [Google Scholar]
  3. Abbott JA, Lu R, Upchurch BL, Stroshine RL. 1997. Technologies for non-destructive quality evaluation of fruits and vegetables. Hortic. Rev. 20:1–120 [Google Scholar]
  4. Abera M, Fanta S, Verboven P, Ho Q, Carmeliet J, Nicolai B. 2013. Virtual fruit tissue generation based on cell growth modelling. Food Bioprocess Tech. 6:4859–69 [Google Scholar]
  5. Aprea E, Gika H, Carlin S, Theodoridis G, Vrhovsek U, Mattivi F. 2011. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. J. Chromatogr. A 1218:4517–24 [Google Scholar]
  6. Arias R, Lee TC, Logendra L, Janes H. 2000. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 48:1697–702 [Google Scholar]
  7. Azcarate C, Barringer SA. 2010. Effect of enzyme activity and frozen storage on jalapeño pepper volatiles by selected ion flow tube–mass spectrometry. J. Food Sci. 75:C710–21 [Google Scholar]
  8. Bai Z, Changming Sun GZ. 2009. Splitting touching cells based on concave points and ellipse fitting. Pattern Recogn. Lett. 42:2434–46 [Google Scholar]
  9. Barreiro P, Ortiz C, Ruiz-Altisent M, De Smedt V, Schotte S. et al. 1998. Comparison between sensory and instrumental measurements for mealiness assessment in apples. A collaborative test. J. Texture Stud. 29:509–25 [Google Scholar]
  10. Barreiro P, Ortiz C, Ruiz-Altisent M, Ruiz-Cabello J, Fernández-Valle ME. et al. 2000. Mealiness assessment in apples and peaches using MRI techniques. Magn. Reson. Imaging 18:1175–81 [Google Scholar]
  11. Barrie Smith N, Webb A. 2010. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications. Cambridge, UK: Cambridge Univ. Press296
  12. Bechar A, Mizrach A, Barreiro P, Landahl S. 2005. Determination of mealiness in apples using ultrasonic measurements. Biosyst. Eng. 91:329–34 [Google Scholar]
  13. Benady M, Simon JE, Charles DJ, Miles GE. 1995. Fruit ripeness determination by electronic sensing of aromatic volatiles. Trans. ASABE 38:251–57 [Google Scholar]
  14. Berna A. 2010. Metal oxide sensors for electronic noses and their application to food analysis. Sensors 10:3882–910 [Google Scholar]
  15. Berna AZ, Geysen S, Li S, Verlinden BE, Larnmertyn J, Nicolai BM. 2007. Headspace fingerprint mass spectrometry to characterize strawberry aroma at super-atmospheric oxygen conditions. Postharvest Biol. Technol. 46:230–36 [Google Scholar]
  16. Berna AZ, Lammertyn J, Saevels S, Di Natale C, Nicolai BM. 2004. Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sensor. Actuat. B 97:324–33 [Google Scholar]
  17. Biasioli F, Gasperi F, Aprea E, Colato L, Boscaini E, Mark TD. 2003. Fingerprinting mass spectrometry by PTR-MS: heat treatment versus pressure treatment of red orange juice—a case study. Int. J. Mass Spectrom. 223:343–53 [Google Scholar]
  18. Biniecka M, Caroli S. 2011. Analytical methods for the quantification of volatile aromatic compounds. TrAC Trend Anal. Chem. 30:1756–70 [Google Scholar]
  19. Bohren CF, Huffman DR. 1983. Absorption and Scattering of Light by Small Particles New York: Wiley
  20. Boukobza F, Dunphy PJ, Taylor AJ. 2001. Measurement of lipid oxidation-derived volatiles in fresh tomatoes. Postharvest Biol. Technol. 23:117–31 [Google Scholar]
  21. Boukobza F, Taylor AJ. 2002. Effect of postharvest treatment on flavour volatiles of tomatoes. Postharvest Biol. Technol. 25:321–31 [Google Scholar]
  22. Brecht JK, Shewfelt RL, Garner JC, Tollner EW. 1991. Using X-ray computer tomography (X-ray CT) to nondestructively determine maturity of green tomatoes. Hortic. Sci. 26:45–47 [Google Scholar]
  23. Brosnan T, Sun DW. 2004. Improving quality inspection of food products by computer vision—a review. J. Food Eng. 61:3–16 [Google Scholar]
  24. Cappellin L, Soukoulis C, Aprea E, Granitto P, Dallabetta N. et al. 2012. PTR-ToF-MS and data mining methods: a new tool for fruit metabolomics. Metabolomics 8:761–70 [Google Scholar]
  25. Chayaprasert W, Stroshine R. 2005. Rapid sensing of internal browning in whole apples using a low-cost, low-field proton magnetic resonance sensor. Postharvest Biol. Technol. 36:291–301 [Google Scholar]
  26. Chen H, De Baerdemaeker J. 1993. Effect of apple shape on acoustic measurements of firmness. J. Agric. Eng. Res. 56:253–66 [Google Scholar]
  27. Chen HW, Sun YP, Wortmann A, Gu HW, Zenobi R. 2007. Differentiation of maturity and quality of fruit using noninvasive extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Anal. Chem. 79:1447–55 [Google Scholar]
  28. Chen P, McCarthy MJ, Kauten R. 1989. NMR for internal quality evaluation of fruits and vegetables. Trans. ASABE 32:1747–53 [Google Scholar]
  29. Cho BK, Chayaprasert W, Stroshine RL. 2008. Effects of internal browning and watercore on low field (5.4 MHz) proton magnetic resonance measurements of T2 values of whole apples. Postharvest Biol. Technol. 47:81–89 [Google Scholar]
  30. Clark CJ, Burmeister DM. 1999. Magnetic resonance imaging of browning development in ‘Braeburn’ apple during controlled-atmosphere storage under high CO2. HortScience 34:915–19 [Google Scholar]
  31. Clark CJ, Hockings PD, Joyce DC, Mazucco RA. 1997. Application of magnetic resonance imaging to pre- and post-harvest studies of fruits and vegetables. Postharvest Biol. Technol. 11:1–21 [Google Scholar]
  32. Clark HL, Mikelson W. 1942. Fruit ripeness tester. US Patent No. 2277–37
  33. Cooke JR. 1972. An interpretation of the resonant behaviour of intact fruits and vegetables. Trans. ASABE 15:61075–80 [Google Scholar]
  34. Cooke JR, Rand RH. 1973. A mathematical study of resonance in intact fruits and vegetables using a 3-media elastic sphere model. J. Agric. Eng. Res. 18:141–57 [Google Scholar]
  35. Cubeddu R, D'andrea C, Pifferi A, Taroni P, Torricelli A. et al. 2001. Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm. Appl. Opt. 40:538–43 [Google Scholar]
  36. Dallüge J, Beens J, Brinkman UAT. 2003. Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. J. Chromatogr. A 1000:69–108 [Google Scholar]
  37. Danieli E, Berdel K, Perlo J, Michaeli W, Masberg U. et al. 2010. Determining object boundaries from MR images with sub-pixel resolution: towards in-line inspection with a mobile tomograph. J. Magn. Reson. 207:53–58 [Google Scholar]
  38. Danieli E, Mauler J, Perlo J, Blümich B, Casanova F. 2009. Mobile sensor for high resolution NMR spectroscopy and imaging. J. Magn. Reson. 198:80–87 [Google Scholar]
  39. Datta AK, van der Sman R, Gulati T, Warning A. 2012. Soft matter approaches as enablers for food macroscale simulation. Faraday Discuss. 158:435–59 [Google Scholar]
  40. De Baerdemaeker J, Lemaitre L, Meire R. 1982. Quality detection by frequency spectrum analysis of the fruit impact force. Trans. ASABE 25:175–78 [Google Scholar]
  41. Defraeye T, Lehmann V, Gross D, Holat C, Herremans E. et al. 2013. Application of MRI for tissue characterisation of ‘Braeburn’ apple. Postharvest Biol. Technol. 75:96–105 [Google Scholar]
  42. De Ketelaere B, De Baerdemaeker J. 2001. Tomato firmness estimation using vibration measurements. Math. Comp. Simul. 56:385–94 [Google Scholar]
  43. De Ketelaere B, Howarth MS, Crezee L, Lammertyn J, De Baerdemaeker J. 2006a. Postharvest firmness changes as measured by acoustic and low mass impact devices: a comparison of techniques. Postharvest Biol. Technol. 41:275–84 [Google Scholar]
  44. De Ketelaere B, Stulens J, Lammertyn J, De Baerdemaeker J. 2006b. Identification and quantification of sources of biological variance: a methodological approach. Postharvest Biol. Technol. 39:1–9 [Google Scholar]
  45. Delwiche M, Tang S, Mehlschau JJ. 1989. An impact force response fruit firmness sorter. Trans ASAE 32:10321–26 [Google Scholar]
  46. Delwiche MJ, McDonald T, Bowers SV. 1987. Determination of peach firmness by analysis of impact forces. Trans. ASABE 30:249–54 [Google Scholar]
  47. Di Natale C, Macagnano A, Martinelli E, Proietti E, Paolesse R. et al. 2001. Electronic nose based investigation of the sensorial properties of peaches and nectarines. Sens. Actuators B 77:561–66 [Google Scholar]
  48. Donis-Gonzalez IR, Guyer DE, Pease A. 2012a. Application of response surface methodology to systematically optimize image quality in computer tomography: a case study using fresh chestnuts (Castanea spp.). Comput. Electron. Agric. 87:94–107 [Google Scholar]
  49. Donis-Gonzalez IR, Guyer DE, Pease A, Fulbright DW. 2012b. Relation of computerized tomography Hounsfield unit measurements and internal components of fresh chestnuts (Castanea spp.). Postharvest Biol. Technol. 64:74–82 [Google Scholar]
  50. Eccher Zerbini P, Grassi M, Cubeddu R, Pifferi A, Torricelli A. 2002. Nondestructive detection of brown heart in pears by time-resolved reflectance spectroscopy. Postharvest Biol. Technol. 25:87–97 [Google Scholar]
  51. Eccher Zerbini P, Vanoli M, Grassi M, Rizzolo A, Fibiani M. et al. 2006. A model for the softening of nectarines based on sorting fruit at harvest by time-resolved reflectance spectroscopy. Postharvest Biol. Technol. 39:223–32 [Google Scholar]
  52. Elmasry G, Kamruzzaman M, Sun DW, Allen P. 2012. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit. Rev. Food Sci. 52:999–1023 [Google Scholar]
  53. Farneti B, Cristescu SM, Costa G, Harren FJM, Woltering EJ. 2012. Rapid tomato volatile profiling by using proton-transfer reaction mass spectrometry (PTR-MS). J. Food Sci. 77:C551–59 [Google Scholar]
  54. Finney EE. 1970. Mechanical resonance within Red Delicious apples and its relation to fruit texture. Trans. ASABE 13:177–80 [Google Scholar]
  55. Finney EE. 1971. Random vibration techniques for non-destructive evaluation of peach firmness. J. Agric. Eng. Res. 16:81–87 [Google Scholar]
  56. Finney EE, Norris KH. 1968. Instrumentation for investigating dynamic mechanical properties of fruits and vegetables. Trans. ASABE 11:94–97 [Google Scholar]
  57. Foerster J, Truppel I, Bochow-Ness O, Geyer M. 2013. Comparison of acoustic sensor systems for quality analysis of asparagus using scanning laser vibrometry for visualization. Comput. Electron. Agric. 91:10–18 [Google Scholar]
  58. Friel EN, Wang M, Taylor AJ, Macrae EA. 2007. In vitro and in vivo release of aroma compounds from yellow-fleshed kiwifruit. J. Agric. Food Chem. 55:6664–73 [Google Scholar]
  59. Gardner JW, Bartlett PN. 1994. A brief history of electronic noses. Sens. Actuators B 18:211–20 [Google Scholar]
  60. Garratt LC, Linforth R, Taylor AJ, Lowe KC, Power JB, Davey MR. 2005. Metabolite fingerprinting in transgenic lettuce. Plant Biotechnol. J. 3:165–74 [Google Scholar]
  61. Glinski M, Weckwerth W. 2006. The role of mass spectrometry in plant systems biology. Mass Spectrom. Rev. 25:173–214 [Google Scholar]
  62. Gonzalez JJ, Valle RC, Bobroff S, Biasi WV, Mitcham EJ, McCarthy MJ. 2001. Detection and monitoring of internal browning development in ‘Fuji’ apples using MRI. Postharvest Biol. Technol. 22:179–88 [Google Scholar]
  63. Gonzalez R, Woods R. 2007. Digital Image Processing Upper Saddle River, NJ: Prentice Hall, 3rd ed..
  64. Granitto P, Verdes P, Alejandro H. 2005. Large-scale investigation of weed seed identification by machine vision. Comput. Electron. Agric. 47:15–24 [Google Scholar]
  65. Gu HW, Xu N, Chen HW. 2012. Direct analysis of biological samples using extractive electrospray ionization mass spectrometry (EESI-MS). Anal. Bioanal. Chem. 403:2145–53 [Google Scholar]
  66. Guthrie JA, Walsh KB. 1997. Non-invasive assessment of pineapple and mango fruit quality using near infra-red spectroscopy. Aust. J. Exp. Agri. 37:253–63 [Google Scholar]
  67. Guyer D, Yang XK. 2000. Use of genetic artificial neural networks and spectral imaging for defect detection on cherries. Comput. Electron. Agric. 29:179–94 [Google Scholar]
  68. Haff RP. 2008. Real-time correction of distortion in X-ray images of cylindrical or spherical objects and its application to agricultural commodities. Trans. ASABE 51:341–49 [Google Scholar]
  69. Haff RP, Toyofuku N. 2008. X-ray detection of defects and contaminants in the food industry. Sens. Instrum. Food Qual. 2:162–73 [Google Scholar]
  70. Hall LD, Evans SD, Nott KP. 1998. Measurement of textural changes of food by MRI relaxometry. Magn. Reson. Imaging 16:485–92 [Google Scholar]
  71. Hansen JD, Schlaman DW, Haff RP, Yee WL. 2005. Potential postharvest use of radiography to detect internal pests in deciduous tree fruits. J. Entomol. Sci. 40:255–62 [Google Scholar]
  72. Hernández-Sánchez N, Barreiro P, Ruiz-Altisent M, Ruiz-Cabello J, Fernandez-Valle ME. 2004. Detection of freeze injury in oranges by magnetic resonance imaging of moving samples. Appl. Magn. Reson. 26:431–45 [Google Scholar]
  73. Hernández-Sánchez N, Hills BP, Barreiro P, Marigheto N. 2007. An NMR study on internal browning in pears. Postharvest Biol. Technol. 44:260–70 [Google Scholar]
  74. Herremans E, Verboven P, Bongaers E, Estrade P, Verlinden B. et al. 2013. Characterization of ‘Braeburn’ browning disorder by means of X-ray micro-CT. Postharvest Biol. Technol. 75:114–24 [Google Scholar]
  75. Herremans E, Melado-Herreros A, Defraeye T, Verlinden B, Hertog M. 2014. Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars. Postharvest Biol. Technol. 87:42–50 [Google Scholar]
  76. Hertog MLATM, Lammertyn J, De Ketelaere B, Scheerlinck N, Nicolaï BM. 2007. Managing quality variance in the postharvest food chain. Trends Food Sci. Tech. 18:320–32 [Google Scholar]
  77. Hertz H. 1882. Über die Berührung fester elastischer Körper. J. Reine Angew. Matematik 92:156–71 [Google Scholar]
  78. Ho Q, Verboven P, Verlinden B, Herremans E, Wevers M. et al. 2011. A 3-D multiscale model for gas exchange in fruit. Plant Physiol. 155:1158–68 [Google Scholar]
  79. Hung Y, Prussia SE, Ezeike GOI. 1999. Nondestructive firmness sensing using a laser air-puff detector. Postharvest Biol. Technol. 16:15–25 [Google Scholar]
  80. Jancsók PT, Clijmans L, Nicolaï BM, De Baerdemaeker J. 2001. Investigation of the effect of shape on the acoustic response of ‘conference’ pears by finite element modeling. Postharvest Biol. Technol. 231–12
  81. Jiang JA, Chang HY, Wu KH, Ouyang CS, Yang MM. et al. 2008. An adaptive image segmentation algorithm for X-ray quarantine inspection of selected fruits. Comput. Electron. Agric. 60:190–200 [Google Scholar]
  82. Joyce NI, Eady CC, Silcock P, Perry NB, Van Klink JW. 2013. Fast phenotyping of LFS-silenced (tearless) onions by desorption electrospray ionization mass spectrometry (DESI-MS). J. Agric. Food Chem. 61:1449–56 [Google Scholar]
  83. Jublot L, Linforth RST, Taylor AJ. 2005. Direct atmospheric pressure chemical ionisation ion trap mass spectrometry for aroma analysis: speed, sensitivity and resolution of isobaric compounds. Int. J. Mass Spectrom. 243:269–77 [Google Scholar]
  84. Juran JM. 1951. Quality Control Handbook New York: McGraw-Hill
  85. Kataoka H, Lord HL, Pawliszyn J. 2000. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A 880:35–62 [Google Scholar]
  86. Kawano S, Fujiwara T, Iwamoto M. 1993. Nondestructive determination of sugar content in satsuma mandarine using near-infrared (NIR) transmittance. J. Jpn. Soc. Hortic. Sci. 62:465–70 [Google Scholar]
  87. Kienle A, Lilge L, Patterson MS, Hibst R, Steiner R, Wilson BC. 1996. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl. Opt. 35:2304–14 [Google Scholar]
  88. Kim S, Schatzki TF. 2000. Apple watercore sorting system using X-ray imagery: I. Algorithm development. Trans. ASABE 43:1695–702 [Google Scholar]
  89. Kim S, Schatzki TF. 2001. Detection of pinholes in almonds through X-ray imaging. Trans. ASABE 44:997–1003 [Google Scholar]
  90. Koch A, Doyle CL, Matthews MA, Williams LE, Ebeler SE. 2010. 2-Methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype. Phytochemistry 71:2190–98 [Google Scholar]
  91. Korytar P, Janssen HG, Matisova E, Brinkman UAT. 2002. Practical fast gas chromatography: methods, instrumentation and applications. TrAC Trend Anal. Chem. 21:558–72 [Google Scholar]
  92. Kuroki S, Oshita S, Sotome I, Kawagoe Y, Seo Y. 2004. Visualization of 3-D network of gas-filled intercellular spaces in cucumber fruit after harvest. Postharvest Biol. Technol. 33:255–62 [Google Scholar]
  93. Lammertyn J, Dresselaers T, Van Hecke P, Jancsók P, Wevers M, Nicolai BM. 2003a. Analysis of the time course of core breakdown in ‘Conference’ pears by means of MRI and X-ray CT. Postharvest Biol. Technol. 29:19–28 [Google Scholar]
  94. Lammertyn J, Dresselaers T, Van Hecke P, Jancsók P, Wevers M, Nicolai BM. 2003b. MRI and X-ray CT study of spatial distribution of core breakdown in ‘Conference’ pears. Magn. Reson. Imaging 21:805–15 [Google Scholar]
  95. Lammertyn J, Nicolai B, Ooms K, De Smedt V, De Baerdemaeker J. 1998. Non-destructive measurement of acidity, soluble solids, and firmness of Jonagold apples using NIR-spectroscopy. Trans. ASABE 41:1089–94 [Google Scholar]
  96. Landahl S, Terry LA. 2012. Avocado firmness monitoring with values obtained by means of laser Doppler vibrometry. IV Int. Conf. Postharvest Unlimited 2011 945:239–45 [Google Scholar]
  97. Létal J, Jirák D, Suderlová L, Hájek M. 2003. MRI ‘texture’ analysis of MR images of apples during ripening and storage. LWT- Food Sci. Technol. 36:719–27 [Google Scholar]
  98. Li Y. 2012. Confined direct analysis in real time ion source and its applications in analysis of volatile organic compounds of Citrus limon (lemon) and Allium cepa (onion). Rapid Commun. Mass Spectrom. 26:1194–202 [Google Scholar]
  99. Li ZF, Wang N, Raghavan GSV, Vigneault C. 2009. Ripeness and rot evaluation of ‘Tommy Atkins’ mango fruit through volatiles detection. J. Food Eng. 91:319–24 [Google Scholar]
  100. Løkke MM, Edelenbos M, Larsen E, Feilberg A. 2012. Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS). Sensors 12:16060–76 [Google Scholar]
  101. Lu R. 2001. Predicting firmness and sugar content of sweet cherries using near-infrared diffuse reflectance spectroscopy. Trans. ASABE 44:1265–71 [Google Scholar]
  102. Mariette F, Collewet G, Davenel A, Lucas T, Musse M. 2012. Quantitative MRI in food science & food engineering. eMagResearch 1:205–14 [Google Scholar]
  103. Marigheto N, Venturi L, Hills B. 2008. Two-dimensional NMR relaxation studies of apple quality. Postharvest Biol. Technol. 48:331–40 [Google Scholar]
  104. Mathanker SK, Weckler PR, Bowser T, Wang N, Maness NO. 2011. AdaBoost classifiers for pecan defect classification. Comput. Electron. Agric. 77:60–68 [Google Scholar]
  105. Mathanker SK, Weckler PR, Wang N, Bowser T, Maness NO. 2010. Local adaptive thresholding of pecan X-ray images: reverse water flow method. Trans. ASABE 53:961–69 [Google Scholar]
  106. McCarthy MJ, Zion B, Chen P, Ablett S, Darke AH, Lillford PJ. 1995. Diamagnetic susceptibility changes in apple tissue after bruising. J. Sci. Food Agric. 67:13–20 [Google Scholar]
  107. McClements DJ. 1997. Ultrasonic characterization of foods and drinks: principles, methods, and applications. Crit. Rev. Food Sci. 37:1–46 [Google Scholar]
  108. McGlone VA, Kawano S. 1998. Firmness, dry-matter and soluble-solids assessment of postharvest kiwifruit by NIR spectroscopy. Postharvest Biol. Technol. 13:131–41 [Google Scholar]
  109. Meilgaard MC, Carr BT, Vance Civille G. 2006. Sensory Evaluation Techniques Boca Raton, FL: CRC Press464, Fourth ed..
  110. Mendoza F, Lu R, Cen H. 2012. Comparison and fusion of four nondestructive sensors for predicting apple fruit firmness and soluble solids content. Postharvest Biol Technol. 73:89–98 [Google Scholar]
  111. Mendoza F, Verboven P, Ho QT, Kerckhofs G, Wevers M, Nicolaï BM. 2010. Multifractal properties of pore-size distribution in apple tissue using X-ray imaging. J. Food Eng. 99:206–15 [Google Scholar]
  112. Mendoza F, Verboven P, Mebatsion HK, Kerckhofs G, Wevers M, Nicolaï BM. 2007. Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography. Planta 226:559–70 [Google Scholar]
  113. Micholt E, Jans E, Callewaert E, Bartic C, Lammertyn J, Nicolaï BM. 2013. Extracellular recordings from rat olfactory epithelium slices using micro electrode arrays. Sens. Actuators B 184:40–47 [Google Scholar]
  114. Milczarek RR, McCarthy MJ. 2009. Low-field MR sensors for fruit inspection. Magnetic Resonance Microscopy, Spatially Resolved NMR Techniques and Applications S Codd, J Seymour 289–99 Weinheim, Germany: Wiley-VCH [Google Scholar]
  115. Mizrach A. 2004. Assessing plum fruit quality attributes with an ultrasonic method. Food Res. Int. 37:627–31 [Google Scholar]
  116. Mizrach A. 2008. Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre- and postharvest processes. Postharvest Biol. Technol. 48:315–30 [Google Scholar]
  117. Mondello L, Casilli A, Tranchida PQ, Costa R, Dugo P, Dugo G. 2004. Fast GC for the analysis of citrus oils. J. Chromatogr. Sci. 42:410–16 [Google Scholar]
  118. Musse M, De Guio F, Quellec S, Cambert M, Challois S, Davenel A. 2010. Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography. Magn. Reson. Imaging 28:1525–34 [Google Scholar]
  119. Næs T, Isaksson T, Fearn T, Davies T. 2004. A User-Friendly Guide to Multivariate Calibration and Classification Charlton, UK: NIR
  120. Nguyen Do Trong N, Watté R, Aernouts B, Herremans E. et al. 2011. Spatially resolved spectroscopy for non-destructive quality inspection of foods Meet. Pap. 1111381, Presented at Annu. Int. ASABE Meet. Louisville
  121. Nguyen D, Trong N. 2013. Spatially resolved spectroscopy for non-destructive quality inspection of foods PhD Thesis, KU Leuven, Belg 137
  122. Nicolaï BM, Lotze E, Peirs A, Scheerlinck N, Theron KI. 2006. Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biol. Technol. 40:1–6 [Google Scholar]
  123. Nicolaï BM, Berna A, Beullens K, Vermeir S, Saevels S, Lammertyn J. 2008a. High throughput flavour profiling of fruit. Fruit and Vegetable Flavor: Recent Advances and Future Prospects B Brückner Boca Raton, FL: CRC Press-Woodland Publ. Ltd. [Google Scholar]
  124. Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W. et al. 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol. Technol. 46:99–118 [Google Scholar]
  125. Nicolaï BM, Verlinden BE, Desmet M, Saevels S, Saeys W. et al. 2008b. Time-resolved and continuous wave NIR reflectance spectroscopy to predict soluble solids content and firmness of pear. Postharvest Biol. Technol. 47:68–74 [Google Scholar]
  126. Nielsen MS, Lauridsen T, Christensen KB, Feidenhans LR. 2013. X-ray dark field imaging for detection of foreign bodies in food. Food Control. 30:531–35 [Google Scholar]
  127. Oshita S, Shima K, Haruta T, Seo Y, Kawagoe Y. et al. 2000. Discrimination of odors emanating from ‘La France’ pear by semi-conducting polymer sensors. Comput. Electron. Agric. 26:209–16 [Google Scholar]
  128. Ozcan G, Barringer S. 2011. Effect of enzymes on strawberry volatiles during storage, at different ripeness level, in different cultivars, and during eating. J. Food Sci. 76:C324–33 [Google Scholar]
  129. Pallottino F, Costa C, Antonucci F, Strano MC, Calandra M. et al. 2012. Electronic nose application for determination of Penicillium digitatum in Valencia oranges. J. Sci. Food Agric. 92:2008–12 [Google Scholar]
  130. Patterson MS, Chance B, Wilson BC. 1989. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28:2331–36 [Google Scholar]
  131. Peirs A, Scheerlinck N, Nicolaï BM. 2003. Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents. Postharvest Biol. Technol. 30:233–48 [Google Scholar]
  132. Peirs A, Scheerlinck N, Touchant K, Nicolaï BM. 2002. Comparison of Fourier transform and dispersive near-infrared reflectance spectroscopy for apple quality measurements. Biosyst. Eng. 81:305–11 [Google Scholar]
  133. Peleg K. 1993. Comparison of non-destructive measurement of apple firmness. J. Agric. Eng. Res. 55:227–38 [Google Scholar]
  134. Peng Y, Lu R. 2008. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 48:52–62 [Google Scholar]
  135. Povey MJW, McClements DJ. 1988. Ultrasonics in food engineering. Part I. Introduction and experimental methods. J. Food Eng. 8:217–45 [Google Scholar]
  136. Prussia SE, Astleford JJ, Hewlett B, Hung YC. 1994. Non-destructive firmness measuring device. US Patent No. 5372030
  137. Qin JW, Lu RF. 2008. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biol. Technol. 49:355–65 [Google Scholar]
  138. Qin J, Lu R, Peng Y. 2009. Prediction of apple internal quality using spectral absorption and scattering properties. Trans. ASABE 52:499–507 [Google Scholar]
  139. Ragni L, Berardinelli A, Guarnieri A. 2010. Impact device for measuring the flesh firmness of kiwifruits. J. Food Eng. 96:591–97 [Google Scholar]
  140. Rizzolo A, Vanoli M, Zerbini PE, Jacob S, Torricelli A. et al. 2009. Prediction ability of firmness decay models of nectarines based on the biological shift factor measured by time-resolved reflectance spectroscopy. Postharvest Biol. Technol. 54:131–40 [Google Scholar]
  141. Rocha SM, Coelho E, Zrostlikova J, Delgadillo I, Coimbra MA. 2007. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. J. Chromatogr. A 1161:292–99 [Google Scholar]
  142. Róth E. 2008. Internal Quality Attributes of Integrated and Organically Produced Apple Fruit PhD Thesis, Katholieke Univ., Leuven, Belg 167
  143. Ruiz-Altisent M, Ruiz-Garcia L, Moreda GP, Renfu L, Hernandez-Sanchez N. et al. 2010. Sensors for product characterization and quality of specialty crops—a review. Comput. Electron. Agric. 74:176–94 [Google Scholar]
  144. Saevels S, Lammertyn J, Berna AZ, Veraverbeke EA, Di Natale C, Nicolaï BM. 2003. Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apples. Postharvest Biol. Technol. 30:3–14 [Google Scholar]
  145. Saevels S, Lammertyn J, Berna AZ, Veraverbeke EA, Di Natale C, Nicolaï BM. 2004. An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life. Postharvest Biol. Technol. 31:9–19 [Google Scholar]
  146. Saeys W, Velazco-Roa MA, Thennadil SN, Ramon H, Nicolaï BM. 2008. Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm. Appl. Opt. 47:1–12 [Google Scholar]
  147. Saito K, Miki T, Hayashi S, Kajikawa H, Shimada M. et al. 1996. Application of magnetic resonance imaging to non-destructive void detection in watermelon. Cryogenics 36:1027–31 [Google Scholar]
  148. Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ. et al. 2003. X-ray micro-tomography an attractive characterisation technique in materials science. Nucl. Instrum. Methods Phys. Res. B 200:273–86 [Google Scholar]
  149. Shahin MA, Tollner EW, McClendon RW. 2001. Artificial intelligence classifiers for sorting apples based on watercore. J. Agric. Eng. Res. 79:265–74 [Google Scholar]
  150. Shmulevich I, Galili N, Howarth MS. 2003. Nondestructive dynamic testing of apples for firmness evaluation. Postharvest Biol. Technol. 29:287–99 [Google Scholar]
  151. Shmulevich I, Galili N, Rosenfeld D. 1996. Detection of fruit firmness by frequency analysis. Trans. ASABE 39:1047–55 [Google Scholar]
  152. Slaughter S. 1995. Non-destructive determination of internal quality in peaches and nectarines. Trans. ASABE 38:617–23 [Google Scholar]
  153. Sloof M, Tijskens LMM, Wilkinson EC. 1996. Concepts for modelling the quality of perishable products. Trends Food Sci. Tech. 7:165–71 [Google Scholar]
  154. Smith D, Spanel P. 2011. Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. TrAC Trend Anal. Chem. 30:945–59 [Google Scholar]
  155. Smith T, Guild J. 1931. The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 33:73–134 [Google Scholar]
  156. Spanel P, Smith D. 1999. Selected ion flow tube—mass spectrometry: detection and real-time monitoring of flavours released by food products. Rapid Commun. Mass Spectrom. 13:585–96 [Google Scholar]
  157. Sugiyama J, Al-Haq MI, Tsuta M. 2005. Application of portable acoustic firmness tester for fruits. Information and technology for sustainable fruit and vegetable production. Proc. FRUTIC 05, Montpellier Fr., Sep. 12–16439–42 [Google Scholar]
  158. Sun DW. 2010. Hyperspectral Imaging for Food Quality Analysis and Control London: Academic
  159. Sun T, Huang K, Xu H, Ying Y. 2010. Research advances in nondestructive determination of internal quality in watermelon/melon: a review. J. Food Eng. 100:569–77 [Google Scholar]
  160. Surawang S, Rattanapanone N, Linforth R, Taylor AJ. 2005. Effect of oxygen and free fatty acids on cucumber flavour generation. Proc. 5th Int. Postharvest Symp. 1–3:549–55 [Google Scholar]
  161. Taylor AJ, Linforth RST, Harvey BA, Blake B. 2000. Atmospheric pressure chemical ionisation mass spectrometry for in vivo analysis of volatile flavour release. Food Chem. 71:327–38 [Google Scholar]
  162. Tollner EW, Gitaitis RD, Seebold KW, Maw BW. 2005. Experiences with a food product X-ray inspection system for classifying onions. Appl. Eng. Agric. 21:907–12 [Google Scholar]
  163. Tollner EW, Hung YC, Upchurch BL, Prussia SE. 1992. Relating X-ray absorption to density and water-content in apples. Trans. ASABE 35:1921–28 [Google Scholar]
  164. Torricelli A, Spinelli L, Contini D, Vanoli M, Rizzolo A, Eccher Zerbini P. 2008. Time-resolved reflectance spectroscopy for non-destructive assessment of food quality. Sens. Instrum. Food Qual. 2:82–89 [Google Scholar]
  165. Toyofuku N, Schatzki TF. 2007. Image feature based detection of agricultural quarantine materials in X-ray images. J. Air. Transp. Manag. 13:348–54 [Google Scholar]
  166. Vandendriessche T, Keulemans J, Geeraerd A, Nicolaï BM, Hertog MLATM. 2012. Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol. 32:406–14 [Google Scholar]
  167. Vandendriessche T, Nicolaï BM, Hertog MLATM. 2013. Optimization of HS SPME fast GC-MS for high-throughput analysis of strawberry aroma. Food Anal. Method 6:512–20 [Google Scholar]
  168. Van As H, van Duynhoven J. 2013. MRI of plants and foods. J. Magn. Reson. 229:25–34 [Google Scholar]
  169. van Ruth S, Boscaini E, Mayr D, Pugh J, Posthumus M. 2003. Evaluation of three gas chromatography and two direct mass spectrometry techniques for aroma analysis of dried red bell peppers. Int. J. Mass Spectrom. 223:55–65 [Google Scholar]
  170. Verboven P, Kerckhofs G, Mebatsion H, Ho QT, Temst K. et al. 2008. Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron X-ray computed tomography. Plant Physiol. 147:518–27 [Google Scholar]
  171. Verboven P, Nemeth A, Abera M, Bongaers E, Daelemans D. et al. 2013. Optical coherence tomography visualizes microstructure of apple peel. Postharvest Biol. Technol. 78:123–32 [Google Scholar]
  172. Verlinden BE, De Smedt V, Nicolaï BM. 2004. Evaluation of ultrasonic wave propagation to measure chilling injury in tomatoes. Postharvest Biol. Technol. 32:109–13 [Google Scholar]
  173. Wampler B, Barringer SA. 2012. Volatile generation in bell peppers during frozen storage and thawing using selected ion flow tube mass spectrometry (SIFT-MS). J. Food Sci. 77:C677–83 [Google Scholar]
  174. Wang CY, Wang PC. 1989. Nondestructive detection of core breakdown in ‘Bartlett’ pears with nuclear magnetic resonance imaging. HortScience 24:106–9 [Google Scholar]
  175. Wang CY, Wang PC. 1992. Differences in nuclear magnetic resonance images between chilled and non-chilled zucchini squash. Environ. Exp. Bot. 32:213–19 [Google Scholar]
  176. Wang SY, Wang PC, Faust M. 1988. Non-destructive detection of watercore in apple with nuclear magnetic resonance imaging. Sci. Hortic. 25:227–34 [Google Scholar]
  177. Watson R, Wright CJ, McBurney T, Taylor AJ, Linforth RST. 2002. Influence of harvest date and light integral on the development of strawberry flavour compounds. J. Exp. Bot. 53:2121–29 [Google Scholar]
  178. Wu D, Sun DW. 2013. Colour measurements by computer vision for food quality control—a review. Trends Food Sci. Tech. 29:5–20 [Google Scholar]
  179. Xing J, Saeys W, De Baerdemaeker J. 2007. Combination of chemometric tools and image processing for bruise detection on apples. Comput. Electron. Agric. 56:1–13 [Google Scholar]
  180. Xu YC, Barringer S. 2009. Effect of temperature on lipid-related volatile production in tomato puree. J. Agric. Food Chem. 57:9108–13 [Google Scholar]
  181. Xu YC, Barringer S. 2010. Comparison of tomatillo and tomato volatile compounds in the headspace by selected ion flow tube mass spectrometry (SIFT-MS). J. Food Sci. 75:C268–73 [Google Scholar]
  182. Zion B, Chen P, McCarthy MJ. 1995. Detection of bruises in magnetic resonance images of apples. Comput. Electron. Agric. 13:289–99 [Google Scholar]
/content/journals/10.1146/annurev-food-030713-092410
Loading
/content/journals/10.1146/annurev-food-030713-092410
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error