Skip to main content
Log in

Gene Expression Data to Mouse Atlas Registration Using a Nonlinear Elasticity Smoother and Landmark Points Constraints

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper proposes a numerical algorithm for image registration using energy minimization and nonlinear elasticity regularization. Application to the registration of gene expression data to a neuroanatomical mouse atlas in two dimensions is shown. We apply a nonlinear elasticity regularization to allow larger and smoother deformations, and further enforce optimality constraints on the landmark points distance for better feature matching. To overcome the difficulty of minimizing the nonlinear elasticity functional due to the nonlinearity in the derivatives of the displacement vector field, we introduce a matrix variable to approximate the Jacobian matrix and solve for the simplified Euler-Lagrange equations. By comparison with image registration using linear regularization, experimental results show that the proposed nonlinear elasticity model also needs fewer numerical corrections such as regridding steps for binary image registration, it renders better ground truth, and produces larger mutual information; most importantly, the landmark points distance and L 2 dissimilarity measure between the gene expression data and corresponding mouse atlas are smaller compared with the registration model with biharmonic regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Toga, A.W., Dinov, I.D., Thompson, P.M., Woods, R.P., VanHorn, J.D., Shattuck, D.W., Parker, D.S.: Center for computational biology: resources, achievements, and challenges. J. Am. Med. Inform. Assoc. (2011). doi:10.1136/amiajnl-2011-000525

    Google Scholar 

  2. Fischer, B., Modersitzki, J.: Fast diffusion registration. In: Inverse Problems, Image Analysis, and Medical Imaging. AMS Contemporary Mathematics, vol. 313, pp. 117–129 (2002)

    Chapter  Google Scholar 

  3. Fischer, B., Modersitzki, J.: Curvature based image registration. J. Math. Imaging Vis. 18, 81–85 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beg, F., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  5. Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4, 375–405 (2002)

    Article  Google Scholar 

  6. Temam, R.M., Miranville, A.M.: Mathematical Modeling in Continuum Mechanics. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  7. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  8. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM, Philadelphia (2009)

    MATH  Google Scholar 

  9. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (2000)

    Google Scholar 

  10. Rabbitt, R.D., Weiss, J.A., Christensen, G.E., Miller, M.I.: Mapping of hyperelastic deformable templates using the finite element method. Proc. SPIE 2573, 252–265 (1995)

    Article  Google Scholar 

  11. Lin, T., Lee, E., Dinov, I., Le Guyader, C., Thompson, P., Toga, A., Vese, L.: Gene to mouse atlas registration using a landmark-based nonlinear elasticity smoother. Proc. SPIE 7259, 72592Q (2009)

    Article  Google Scholar 

  12. MacKenzie-Graham, A.J., Lee, E.-F., Dinov, I.D., Yuan, H., Jacobs, R.E., Toga, A.W.: Multimodal, multidimensional models of mouse brain. Epilepsia 48(Suppl. 4), 75–81 (2007)

    Article  Google Scholar 

  13. Lee, E.-F., Jacobs, R.E., Dinov, I., Leow, A., Toga, A.W.: Standard atlas space for C57BL/6J neonatal mouse brain. Anat. Embryol. 210(4), 245–263 (2005)

    Article  Google Scholar 

  14. Broit, C.: Optimal Registration of Deformed Images. University of Pennsylvania, Philadelphia (1981)

    Google Scholar 

  15. Ciarlet, P.G.: Elasticité Tridimensionnelle. Masson, Paris (1985)

    Google Scholar 

  16. Tagare, H.D., Groisser, D., Skrinjar, O.: A geometric theory of symmetric registration. In: Proceedings of CVPRW’06 (2006)

    Google Scholar 

  17. LeGuyader, C., Vese, L.A.: A combined segmentation and registration framework with a nonlinear elasticity smoother. In: LNCS, vol. 5567, pp. 600–611. Springer, Berlin (2009)

    Google Scholar 

  18. LeGuyader, C., Vese, L.A.: A combined segmentation and registration framework with a nonlinear elasticity smoother. Comput. Vis. Image Underst. 115(12), 1689–1709 (2011)

    Article  Google Scholar 

  19. Sorzano, C.O.S., Thévenaz, P., Unser, M.: Elastic registration of biological images using vector-spline regularization. IEEE Trans. Biomed. Eng. 52(4), 652–663 (2005)

    Article  Google Scholar 

  20. Negrón Marrero, P.V.: A numerical method for detecting singular minimizers of multidimensional problems in nonlinear elasticity. Numer. Math. 58(1), 135–144 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yanovsky, I., Thompson, P., Osher, S., Leow, A.: Topology preserving log-unbiased nonlinear image registration: theory and implementation. In: Proceedings of CVPR (2007)

    Google Scholar 

  22. Yanovsky, I., Osher, S., Thompson, P., Leow, A.: Log-unbiased large-deformation image registration. In: Proceedings of VISAPP, vol. 1, pp. 272–279 (2007)

    Google Scholar 

  23. Faugeras, O., Hermosillo, G.: Well-posedness of two nonrigid multimodal image registration methods. SIAM J. Appl. Math. 64(5), 1550–1587 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Droske, M., Rumpf, M.: A variational approach to non-rigid morphological registration. SIAM J. Appl. Math. 64(2), 668–687 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peckar, W., Schnörr, C., Rohr, K., Stiehl, H.S.: Parameter-free elastic deformation approach for 2D and 3D registration using prescribed displacements. J. Math. Imaging Vis. 10(2), 143–162 (1999)

    Article  MATH  Google Scholar 

  26. Johnson, H.J., Christensen, G.E.: Consistent landmark and intensity-based image registration. IEEE Trans. Med. Imaging 21(5), 450–461 (2002)

    Article  Google Scholar 

  27. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  28. Lin, T., Lee, E., Dinov, I., Le Guyader, C., Thompson, P., Toga, A., Vese, L.: A landmark-based nonlinear elasticity model for mouse atlas registration. In: Proceedings of ISBI, pp. 788–791 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita Vese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, T., Le Guyader, C., Dinov, I. et al. Gene Expression Data to Mouse Atlas Registration Using a Nonlinear Elasticity Smoother and Landmark Points Constraints. J Sci Comput 50, 586–609 (2012). https://doi.org/10.1007/s10915-011-9563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9563-6

Keywords

Navigation