Skip to main content
Log in

Exploring control parameters of two photon processes in solutions#

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two-photon microscopy depends extensively on the two-photon absorption cross sections of biologically relevant chromophores. High repetition rate (HRR) lasers are essential in multiphoton microscopy for generating satisfactory signal to noise at low average powers. However, HRR lasers generate thermal distortions in samples even with the slightest single photon absorption. We use an optical chopper with HRR lasers to intermittently ‘blank’ irradiation and effectively minimize thermal effects to result in a femtosecond z-scan setup that precisely measures the two-photon absorption (TPA) cross-sections of chromophores. Though several experimental factors impact such TPA measurements, a systematic effort to modulate and influence TPA characteristics is yet to evolve. Here, we present the effect of several control parameters on the TPA process that are independent of chromophore characteristics for femtosecond laser pulse based measurements; and demonstrate how the femtosecond laser pulse repetition rate, chromophore environment and incident laser polarization can become effective control parameters for such nonlinear optical properties.

We demonstrate how, irrespective of chromophore characteristics, the femtosecond laser pulse repetition rate, chromophore environment and incident laser polarization are effective control parameters for nonlinear optical properties arising from two-photon processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goppert-Mayer M 1931 Ann. Phys. 9 273

    Article  CAS  Google Scholar 

  2. Denk W, Strickler J H and Webb W W 1990 Science 248 73

    Article  CAS  Google Scholar 

  3. Arnbjerg J, Jimenez-Banzo A, Paterson M J, Nonell S, Borrell J I, Christiansen O and Ogilby P R 2007 J. Am. Chem. Soc. 129 5188

    Article  CAS  Google Scholar 

  4. Lin T C, He G S, Zheng Q and Prasad P N 2006 J. Mat. Chem. 16 2490

    Article  CAS  Google Scholar 

  5. Stegeman G I 2001 Handbook of optics IV: Fiber optics & nonlinear optics 2nd ed.; M Bass, J M Enoch, E W V Stryland, and W L Wolfe, (eds.), New York: McGraw-Hill, Chapter 21

  6. Albota M, Beljonne D, Brédas J L, Ehrlich J E, Fu J-Y, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, McCord-Maughon D, Perry J W, Röckel H, Rumi M, Subramaniam G, Webb W W, Wu X-L and Xu C 1998 Science 281 1653

    Article  CAS  Google Scholar 

  7. Kogej T, Beljonne D, Meyers F, Perry J W, Marder S R and Bredas J L 1998 Chem. Phys. Lett. 298 1

    Article  CAS  Google Scholar 

  8. Cho B R, Son K H, Lee S H, Song Y-S, Lee Y-K, Jeon S-J, Choi J H, Lee H and Cho M 2001 J. Am. Chem. Soc. 123 10039

    Article  CAS  Google Scholar 

  9. Rath H, Sankar J, PrabhuRaja V, Chandrashekar T K, Nag A and Goswami D 2005 J. Am. Chem. Soc. 127 11608

    Article  CAS  Google Scholar 

  10. Das S, Nag A, Goswami D and Bharadwaj P K 2006 J. Am. Chem. Soc. 128 402

    Article  CAS  Google Scholar 

  11. Misra R, Kumar R, Chandrashekar T K, Suresh C H, Nag A and Goswami D 2006 J. Am. Chem. Soc. 128 16083

    Article  CAS  Google Scholar 

  12. Misra R, Kumar R, Chandrashekar T K, Nag A and Goswami D 2006 Org. Lett. (Letter) 8 629

    CAS  Google Scholar 

  13. Rath H, PrabhuRaja V, Chandrashekar T K, Nag A, Goswami D and Joshi B S 2006 Org. Lett. (Letter) 8 2325

    CAS  Google Scholar 

  14. Luo Y, Norman P, Macak P and Ågren H 2000 J. Phys. Chem. A 104 4718

    Article  CAS  Google Scholar 

  15. Wang C K, Zhao K, Su Y, Yan R, Zhao X and Luo Y 2003 J. Chem. Phys. 119 1208

    Article  CAS  Google Scholar 

  16. Frediani L, Rinkevicius Z and Ågren H 2005 J. Chem. Phys. 122 244104–1

    Article  Google Scholar 

  17. Zhao K, Ferrighi L, Frediani L, Wang C K and Luo Y 2007 J. Chem. Phys. 126 204509–1

    Google Scholar 

  18. Woo H Y, Liu B, Kohler B, Korystov D, Mikhailovsky A and Bazan G C 2005 J. Am. Chem. Soc. 127 14721

    Article  CAS  Google Scholar 

  19. Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P, Vellis P and Mikroyannidis J 2007 Chem. Phys. Lett. 447 300

    Article  CAS  Google Scholar 

  20. Yan Y, Li B, Liu K, Dong Z, Wang X and Qian S 2007 J. Phys Chem. A 111 4188

    Article  CAS  Google Scholar 

  21. Keller R A, Ambrose W P, Goodwin P M, Jett J H, Martin J C and Wu M 1996 Appl. Spectrosc. 50 12A

    Article  CAS  Google Scholar 

  22. Bergot B J, Chakerian V C, Connell R J, Eadie S S, Fung N H, Davi L, Lee G, Mechen S M and Woo S L 1996 Biotechnol. Adv. 14 85

    Google Scholar 

  23. Fontaine M, Elmquist W F and Miller D W 1996 Life Sci. 59 1521

    Article  CAS  Google Scholar 

  24. Watanabe H, Hayazawa N, Inouye Y and Kawata S 2005 J. Phys Chem. B 109 5012

    Article  CAS  Google Scholar 

  25. Sarkar J, Chowdhury J, Pal P and Talapatra G B 2006 Vib. Spectrosc. 41 90

    Article  CAS  Google Scholar 

  26. Albota M, Xu C and Webb W W 1998 Appl. Opt. 37 7352

    Article  CAS  Google Scholar 

  27. Zhang S, Sun Z, Zhang X, Xu Y, Wang Z, Xu Z and Li R 2005 Chem. Phys. Lett. 415 346

    Article  CAS  Google Scholar 

  28. Takechi K, Sudeep P K and Kamat P V 2006 J. Phys Chem. B 110 16169

    Article  CAS  Google Scholar 

  29. Yu A, Tolbert C A, Farrow D A and Jonas D M 2002 J. Phys Chem. B 106 9407

    Google Scholar 

  30. Nag A and Goswami D 2010 J. Chem. Phys. 132 0154508

    Article  Google Scholar 

  31. Nag A and Goswami D 2009 J. Photochem. Photobiol. A: Chemistry 206 188

    Article  CAS  Google Scholar 

  32. Sheik-Bahae M, Said A A, Wei T, Hagan D J and Van Stryland E W 1990 IEEE J. Quantum Electron 26 760

    Article  CAS  Google Scholar 

  33. Van Stryland E W and Sheik-Bahae M 1998 Characterization techniques and tabulations for organic nonlinear materials, (eds.): M G Kuzyk, C W Dirk, Marcel Dekker, Inc. pp. 655

  34. Goswami D 2006 Opt. Commun. 261 158

    Article  CAS  Google Scholar 

  35. Sengupta P, Balaji J, Banerjee S, Philip R, Kumar G R and Maiti S 2000 J. Chem. Phys. (Communication) 112 9201

    CAS  Google Scholar 

  36. Tian P and Warren W S 2002 Optics Lett. 27 1634

    Article  Google Scholar 

  37. Nag A, De A K and Goswami D 2009 J. Phys. B: At. Mol. Optical Phys. 42 065103

    Article  Google Scholar 

  38. Nag A, Singh S and Goswami D 2006 Chem. Phys. Lett. 430 420

    Article  CAS  Google Scholar 

  39. Wanapun D, Wampler R D, Begue N J and Simpson G J 2008 Chem. Phys. Lett. 455 6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DEBABRATA GOSWAMI.

Additional information

#Dedicated to Prof. N Sathyamurthy on his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

GOSWAMI, D., NAG, A. Exploring control parameters of two photon processes in solutions# . J Chem Sci 124, 281–289 (2012). https://doi.org/10.1007/s12039-012-0227-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-012-0227-3

Keywords

Navigation