Skip to main content
Log in

Subunit F modulates ATP binding and migration in the nucleotide-binding subunit B of the A1AO ATP synthase of Methanosarcina mazei Gö1

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The interaction of the nucleotide-binding subunit B with subunit F is essential in coupling of ion pumping and ATP synthesis in A1AO ATP synthases. Here we provide structural and thermodynamic insights on the nucleotide binding to the surface of subunits B and F of Methanosarcina mazei Gö1 A1AO ATP synthase, which initiated migration to its final binding pocket via two transitional intermediates on the surface of subunit B. NMR- and fluorescence spectroscopy as well as ITC data combined with molecular dynamics simulations of the nucleotide bound subunit B and nucleotide bound B-F complex in explicit solvent, suggests that subunit F is critical for the migration to and eventual occupancy of the final binding site by the nucleotide of subunit B. Rotation of the C-terminus and conformational changes in subunit B are initiated upon binding with subunit F causing a perturbation that leads to the migration of ATP from the transition site 1 through an intermediate transition site 2 to the final binding site 3. This mechanism is elucidated on the basis of change in binding affinity for the nucleotide at the specific sites on subunit B upon complexation with subunit F. The change in enthalpy is further explained based on the fluctuating local environment around the binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brooks B, Karplus M (1983) Proc Natl Acad Sci U S A 80:6571–6575

    Article  CAS  Google Scholar 

  • Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  • Butterfield SM, Waters ML (2003) J Am Chem Soc 125:9580–9581

    Article  CAS  Google Scholar 

  • Chang CE, Chen W, Gilson MK (2005) J Chem Theor Comput 1:1017–1028

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10093

    Article  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system DeLano Scientific. Palo Alto, California

  • Dougherty DA (1996) Science 271:163–168

    Article  CAS  Google Scholar 

  • Dougherty DA (2007) J Nutr 137:1504–1508

    Google Scholar 

  • Feller SE, Zhang YH, Pastor RW, Brooks BR (1995) J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  • Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci U S A 96:9459–9464

    Article  CAS  Google Scholar 

  • Gayen S, Vivekanandan S, Biuković G, Grüber G, Yoon HS (2007) Biochemistry 46:11684–11694

    Article  CAS  Google Scholar 

  • Grüber G, Marshansky V (2008) Bioessays 30:1096–1109

    Article  Google Scholar 

  • Grüber G, Svergun DI, Coskun U, Lemker T, Koch MH, Schägger H, Müller V (2001) Biochemistry 40:1890–1896

    Article  Google Scholar 

  • Hunke C, Chen WJ, Schäfer HJ, Grüber G (2007) Protein Expr Purif 53:378–383

    Article  CAS  Google Scholar 

  • Im W, Lee MS, Brooks CL 3rd (2003) J Comput Chem 24:1691–1702

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kneller DG, Goddard TD (1997) SPARKY, 3.105 ed. University of California, San Francisco

    Google Scholar 

  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  • Kumar A, Manimekalai MS, Grüber G (2008) Acta Crystallogr D: Biol Crystallogr D64:1110–1115

    Article  CAS  Google Scholar 

  • Kumar A, Manimekalai MS, Balakrishna AM, Hunke C, Weigelt S, Sewald N, Grüber G (2009) Proteins 75:807–819

    Article  CAS  Google Scholar 

  • Levitt M, Sander C, Stern PS (1985) J Mol Biol 181:423–447

    Article  CAS  Google Scholar 

  • Lolkema JS, Chaban Y, Boekema EJ (2003) J Bioenerg Biomembr 35:323–335

    Article  CAS  Google Scholar 

  • Mackerell AD Jr (2004) J Comput Chem 25:1584–1604

    Article  CAS  Google Scholar 

  • Mackerell AD Jr, Nilsson L (2008) Curr Opin Struct Biol 18:194–199

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Banavali N, Foloppe N (2000) Biopolymers 56:257–265

    Article  CAS  Google Scholar 

  • Manimekalai MS, Kumar A, Balakrishna AM, Grüber G (2009) J Struct Biol 166:38–45

    Article  CAS  Google Scholar 

  • Martyna GJ, Tobias DJ, Klein ML (1994) J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  • Müller V, Grüber G (2003) Cell Mol Life Sci 60:474–494

    Article  Google Scholar 

  • Numoto N, Kita A, Miki K (2004) Acta Crystallogr D60:810–815

    CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  • Raghunathan D, Gayen S, Grüber G, Verma CS (2010) Biochemistry 49:4181–4190

    Article  CAS  Google Scholar 

  • R Development Core Team (2008) R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

  • Schäfer G, Engelhard M, Müller V (1999) Microbiol Mol Biol Rev 63:570–620

    Google Scholar 

  • Schäfer I, Rössle M, Biuković G, Müller V, Grüber G (2006a) J Bioenerg Biomembr 38:83–92

    Article  Google Scholar 

  • Schäfer IB, Bailer SM, Düser MG, Börsch M, Bernal RA, Stock D, Grüber G (2006b) J Mol Biol 358:725–740

    Article  Google Scholar 

  • Seeber M, Cecchini M, Rao F, Settanni G, Caflisch A (2007) Bioinformatics 23:2625–2627

    Article  CAS  Google Scholar 

  • Sharp KA, Nicholls A, Fine RF, Honig B (1991) Science 252:106–109

    Article  CAS  Google Scholar 

  • Sitkoff D, Sharp KA, Honig B (1994) Biophys Chem 51:397–403

    Article  CAS  Google Scholar 

  • Srinivasan J, Miller J, Kollman PA, Case DA (1998) J Biomol Struct Dyn 16:671–682

    CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) EMBO J 1:945–951

    CAS  Google Scholar 

  • Weber J, Senior AE (2003) FEBS Lett 545:61–70

    Article  CAS  Google Scholar 

  • Willis BTM, Pryor AW (1975) Thermal vibrations in crystallography. Cambridge University Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerhard Grüber or Chandra S. Verma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.34 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghunathan, D., Gayen, S., Kumar, A. et al. Subunit F modulates ATP binding and migration in the nucleotide-binding subunit B of the A1AO ATP synthase of Methanosarcina mazei Gö1. J Bioenerg Biomembr 44, 213–224 (2012). https://doi.org/10.1007/s10863-012-9410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9410-y

Keywords

Navigation