Skip to main content
Log in

Cell cultivation on porous titanium implants with various structures

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The paper presents data on the cultivation of human dermal fibroblasts and rabbit mesenchymal stromal cells on two types of porous titanium implants, i.e., those with irregular pores formed by pressed titanium particles and those with regular pores formed by the cohesion of one-size titanium particles inside the implant. The goal of this study was to determine what type of titanium implant porosity ensured its strongest interaction with cells. Cells were cultivated on implants for 7 days. During this period, they formed a confluent monolayer on the implant surface. Cells grown on titanium implants were monitored by scanning electron microscopy. Fibroblasts interaction with implants depended on the implant porosity structure. On implants with irregular pores cells were more spread. On implants with regular pores fibroblasts enveloped particles and were only occasionally bound with neighboring particles by small outgrowths. There was no tight interaction of particles inside the implant. In implants formed by pressed particles, cells grow not only on surface, but also in the depth of the implant. Thus, we suppose that a tighter interaction of cells with the titanium implant and, supposedly, tissues with the implant in the organism will take place in the variant when the implant structure is formed by pressed titanium particles, i.e., cellular interaction was observed inside the implant. In implants with irregular pores, cells grew both on the surface and in the depth. Thus, cells exhibited more adequate interactions with irregular pore titanium implants in vitro and hopefully the same interaction will be true in tissues after the implantation of the prosthesis into the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blinova, M.I., Paramonov, B.A., Kukhareva, L.V., Gorelik, B.V., Nikitina, Yu.M., and Voronkina, I.V., Effect of Fibroblasts, Collagen, and Laminin on Wound Healing after Cutting off a Piece of Skin in Rats, Byul. Eksp. Biol. Med., 1997, vol. 124, pp. 229–232.

    CAS  Google Scholar 

  • Gorelik, Yu.V., Blinova, M.I., and Pinaev, G.P., The Effect of the Components of the Extracellular Matrix on the Spreading of Rat Keratinocytes in the Substrate During Cultivation in a Low-Calcium Medium, Tsitologiia, 1994, vol. 36, no. 12, pp. 1209–1212.

    PubMed  Google Scholar 

  • Gorelik, Yu.V., D’yakonov, I.A., Kukhareva, L.V., Blinova, M.I., and Pinaev, G.P., Effects of Extracellular Matrix Elements on Pseudopodial Activity of Rat Keratinocytes, Tsitologiia, 1998, vol. 40, no. 12, pp. 1037–1044.

    PubMed  Google Scholar 

  • Kalmykova, N.V., Cherepanova, O.A., Gorelik, Yu.V., Voronkina, I.V., Blinova, M.I., and Pinaev, G.P., Various Effects of Laminin-1 and Laminin-2/4 on Adhesion and Migration of Cultured Human Keratinocytes, Tsitologiia, 2002, vol. 44, no. 8, pp. 792–798.

    CAS  PubMed  Google Scholar 

  • Paramonov, B.A., Blinova, M.I., Nikitina, Yu.M., Gorelik, Yu.V., Voronkina, I.V., Kukhareva, L.V., Malakhov, S.A., and Pinaev, G.P., Effect of Fibroblasts Cultured in vitro and Extracellular Matrix Components on Cutaneous Wound Healing, in Materialy Mezhdunarodnogo simpoziuma “Novye metody lecheniya ozhogov s ispol’zovaniem kul’tiviruemykh kletok kozhi” (Proc. Int. Symp. “New Methods in Treatment of Burns using Cultured Dermal Cells), Tula, 1996, p. 8.

  • Cherepanova, O.A., Kalmykova, N.V., Blinova, M.I., and Pinaev, G.P., Beta-1 and Beta-4 Integrins, and Laminin 67 kDa Receptors in Interaction between A431 Cells and Laminin Isoforms, Tsitologiia, 2003, vol. 45, no. 3, pp. 271–276.

    CAS  PubMed  Google Scholar 

  • Yudintseva, N.M., Gorelik, Yu.V., D’yakonov, I.A., Kalmykova, N.V., Kukhareva, L.V., Blinova, M.I., and Pinaev, G.P., The Use of Dermal Skin Equivalent for Wound Healing, Tsitologiia, 1999, vol. 41, nos. 3–4, p. 329.

    Google Scholar 

  • Blinova, M.I., Yudintseva, N.M., Kalmykova, N.V., Kuzminykh, E.V., Yurlova, N.A., Ovchinnikova, O.A., and Potokin, I.L., Effect of Melanins from Black Yeast Fungi on Proliferation and Differentiation of Cultivated Human Keratinocytes and Fibroblasts, Cell Biol. Int., 2003, vol. 27, pp. 135–147.

    Article  CAS  PubMed  Google Scholar 

  • Badylak, S.F., Meurling, S., Chen, M., Spivack, A., Simmons, O., and Byre, A., Resorable Bioscaffold for Esophageal Repair in a Dog Model, J. Pediatr. Surg., 2000, vol. 35, pp. 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  • Badylak, S.F., Park, K., McCabe, G., and Yoder, M., Marrow-Derived Cells Populate Scaffolds Composed of Xenogenic Extracellular Matrix, Exp. Hematol., 2001, vol. 29, pp. 1310–1318.

    Article  CAS  PubMed  Google Scholar 

  • Badylak, S.F., The Extracellular Matrix as a Scaffold for Tissue Reconstruction, Cell Dev. Biol., 2002, vol. 13, pp. 377–383.

    Article  CAS  Google Scholar 

  • Brånemark, P.I., Osseointegration and Its Experimental Studies, J. Prosthetic Dentistry, 1983, vol. 50, pp. 399–410.

    Article  Google Scholar 

  • Cheng, Y.L., Stanford, C.M., Wefel, J.S., and Keller, J.C., Osteoblastic Cell Attachment to Hydroxyapatite-Coated Implant Surfaces in vitro, Int. J. Oral. Maxillofac. Implats., 1999, vol. 14, pp. 239–247.

    Google Scholar 

  • Cherepanova, O.A., Kalmykova, N.V., Kuzminykh, E.V., Blinova, M.I., and Pinaev, G.P., The Contribution of YIGSR and IKVAV Peptides and β1 Integrin Chain into the Process of Cell Interaction with Laminins, in Abstracts of the 43th International Meeting of the European Tissue Culture Society “Cell Interaction and Cellular Complexity,” Granada, Spain, 2001, P2-02.

  • Cho, S.A. and Jung, S.K., A Removal Torque of the Lazer-Treated Titanium Implants in Rabbit Tibia, Biomaterials, 2003, vol. 24, pp. 4859–4863.

    Article  CAS  PubMed  Google Scholar 

  • Ciolfi, V.J.D., Pillar, R., McCulloch, C., Wang, S.X., Grynpas, M.D., and Kandel, R.A., Chondrocyte Interaction with Porous Titanium Alloy and Calcium Polyphosphate Substrates, Biomaterials, 2003, vol. 24, pp. 4761–4770.

    Article  CAS  PubMed  Google Scholar 

  • Deligianni, D.D., Katsala, N.D., Koutsoukos, P.G., and Missirlis, Y.F., Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation and Detachment Strength, Biomaterials, 2001, vol. 22, pp. 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, E. and Branemark, P.I., Osseointegration from the Perspective of the Plastic Surgeon, Plast. Reconstr. Surg., 1994, vol. 93, pp. 626–637.

    Article  CAS  PubMed  Google Scholar 

  • Fujibayashi, S., Neo, M., Kim, H.M., Kokubo, T., and Nakamura, T., Osteoinduction of Porous Bioactive Titanium Metal, Biomaterials, 2004, vol. 25, pp. 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Giannunzio, G.A., Speerli, R.C., and Guglielmotti, M.B., Electrical Field Effect on Peri-Implant Osteogenesis: A Histologic and Histomorphometric Study, Implant Dent., 2008, vol. 17, pp. 118–126.

    Article  PubMed  Google Scholar 

  • Gorelik, Yu.V., Blinova, M.I., and Pinaev, G.P., Culture Substrate Influence Rat Keratinocyte Differentiation and Cytoskeleton Actin Distribution, Cell Biol. Int., 1994, vol. 18, pp. 435–440.

    Google Scholar 

  • Gorelik, Ju.V., Blinova, M.I., Diakonov, I.A., Kukhareva, L.V., and Pinaev, G.P., Role of Feeder Cells in Spreading and Cytoskeleton Organization of Newborn Rat Keratinocytes, Cell Biol. Int., 1995, vol. 19, pp. 59–64.

    Article  CAS  PubMed  Google Scholar 

  • Gorelik, Ju.V., Paramonov, B.A., Blinova, M.I., Diakonov, I.A., Kukhareva, L.V., and Pinaev, G.P., Matrigel Increases the Rat of Split Wound Healing and Promotes Keratinocyte “Take” in Deep Wounds in Rats, Cytotechnology, 2000, vol. 32, pp. 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Gorelik, Ju.V., Cherepanova, O.A., Voronkina, I.V., Diakonov, I.A., Blinova, M.I., and Pinaev, G.P., Laminin-2/4 from Human Placenta Is a Better Adhesion Agent for Primary Keratinocytes than Laminin-1 from EHS Sarcoma, Cell Biol. Int., 2001, vol. 25, pp. 395–402.

    Article  CAS  PubMed  Google Scholar 

  • Hansson, H.A., Albrektsson, T., and Branemark, P.I., Structural Aspects of the Interface between Tissue and Tita nium Implants, J. Prosthet. Dent., 1983, vol. 50, pp. 108–113.

    Article  CAS  PubMed  Google Scholar 

  • Kalmykova, N.V., Cherepanova, O.A., Gorelik, Ju.V., Blinova, M.I., and Pinaev, G.P., Laminin 2/4 in Adhesion and Migration of Human Keratinocytes, in Abstracts of XVIIth Meeting of the Federation of the European Connective Tissue Societies, 2000, J7.

  • Kim, J.P., Zhang, K., and Chen, J.D., Mechanisms of Human Keratinocyte Migration on Fibronectin: Unique Role of RGD Sites and Integrins, J. Cell Physiol., 1992, vol. 151, pp. 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Koo, S., Konig, B., Jr., Allegrini, S., Jr., Yoshimoto, M., Carbonari, M.J., and Mitri-Luiz, F.F., Titanium Implant Osseointegration with Calcium Pyrophosphate in Rabbits, J. Biomed. Mater. Res. B. Appl. Biomater., 2006, vol. 76, pp. 373–380.

    PubMed  Google Scholar 

  • Lopez-Lacomba, J.L., Garcia-Cantalejo, J.M., Sanz Casado, J.V, Abarrategi, A., Correas Magana, V., and Ramos, V., Use of rhBMP-2 Activated Chitosan Films to Improve Osseointegration, Biomacromolecules, 2006, vol. 7, pp. 792–798.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, C.A., Pendegrass, C.J., Gordon, D., Jacob, J., and Blunn, G.W., Fibronectin Silanized Titanium Alloy a Bioinductive and Durable Coating to Enhance Fibroblast Attachment in vitro, J. Biomed. Mater. Res. Part A, 2007, vol. 83, pp. 1032–1038.

    Article  CAS  Google Scholar 

  • Minamide, A., Yoshida, M., Kawakami, M., Yamasaki, S., Kojima, H., Hashizume, H., Boden, S.D., The Use of Cultured Bone Marrow Cells in Type I Collagen Gel and Porous Hydroxyapatite for Posterolateral Lumbar Spine Fusion, Spine, 2005, vol. 30, pp. 1134–1138.

    Article  PubMed  Google Scholar 

  • Moreo, P., Garcia-Aznar, J.M., and Doblare, M., Bone Ingrowth on the Surface of Endosseous Implants Part 1: Mathematical Model, J. Theor. Biol., 2009, vol. 260, pp. 1–12.

    Article  PubMed  Google Scholar 

  • O’Toole, E.A., Marinkovich, M.P., Hoefller, W.K., Furthmayer, H., and Woodley, D.T., Laminin-5 Inhibits Human Keratinocyres Migration, Exp.Cell Res., 1997, vol. 233, pp. 330–339.

    Article  PubMed  Google Scholar 

  • Park, J.W., Park, K.B., and Suh, J.Y., Effects of Calcium Ion Incorporation on Bone Healing of Ti6Al4V Alloy Implants in Rabbit Tibiae, Biomaterials, 2007, vol. 28, pp. 3306–3313.

    Article  CAS  PubMed  Google Scholar 

  • Pendegrass, C.J., Goodship, A.E., and Blunn, G.W., Development of a Soft Tissue Seal around Bone-Anchored Transcutaneous Amputation Prostheses, Biomaterials, 2006, vol. 27, pp. 4183–4190.

    Article  CAS  PubMed  Google Scholar 

  • Pilliar, R.M., Filiaggi, M.J., Wells, J.D., Grynpas, M.D., and Kandel, R.A., Porous Calcium Polyphosphate Scaffolds Substitute Applications-in vitro Characterization, Biomaterials, 2001, vol. 22, pp. 963–974.

    Article  CAS  PubMed  Google Scholar 

  • Pitkin, M., Raykhtsaum, G., Galibin, O.V., Protasov, M.V., Chihovskaya, J.V., and Belyaeva, I.G., Skin and Bone Integrated Prosthetic Pylon: A Pilot Animal Study, J. Rehabil. Res. Dev., 2006, vol. 43, pp. 573–580.

    Article  PubMed  Google Scholar 

  • Proff, P., Kauschke, E., Rumpel, E., Bayerlein, T., Dietze, S., Fanghanel, J., and Gedrange, T., The Survival and Proliferation of Fibroblasts on Orthodontic Miniscrews with Different Surface Treatment: An in Vitro Study, Folia Morphol. (Warsz), 2006, vol. 65, pp. 78–80.

    CAS  Google Scholar 

  • Reclaru, L., Lerf, R., Eschler, P.Y., Blatter, A., and Mey, J.M., Evaluation of Corrosion on Plasma Sprayed and Anodized Implants, both with and without Bone Cement, Biomaterials, 2003, vol. 24, pp. 3027–3038.

    Article  CAS  PubMed  Google Scholar 

  • Ricci, J.L., Grew, J.C., and Alexander, H., Connective-Tissue Responses to Defined Biomaterial Surfaces, I. Growth of Rat Fibroblast and Bone Marrow Cell Colonies on Microgrooved Substrates, J. Biomed. Mater. Res., A., 2007, vol. 85, pp. 313–325.

    Google Scholar 

  • Secchi, A.G., Grigoriou, V., Shapiro, I.M., Cavalcanti-Adam, E.A., Composto, R.J., Ducheyne, P., and Adams, C.S., RGDS Peptides Immobilized on Titanium Alloy Stimulate Bone Cell Attachment, Differentiation and Confer Resistance to Apoptosis, J. Biomed. Mater. Res. A., 2007, vol. 83, pp. 577–84.

    CAS  PubMed  Google Scholar 

  • Serro, A.P., Fernandes, A.G., Saramago, B., Lima, J., and Barbosa, M.A., Apatite Deposition on Titanium Surfaces. The role of Albumin Adsorbtion, Biomaterials, 1997, vol. 18, pp. 963–968.

    Article  CAS  PubMed  Google Scholar 

  • Serro, A.P. and Saramago, B., Influence of Sterilization on the Mineralization of Titanium Implants Induced by Incubation in Various Biological Model Fluids, Biomaterials, 2003, vol. 24, pp. 47–49.

    Article  Google Scholar 

  • Shibli, J.A., Grassi, S., Cristina de Figueiredo, L., Feres, M., Marcantonio, E., Jr., Iezzi, G., and Piattelli, A., Influence of Implant Surface Topography on Early Osseointegration: A Histological Study in Human Jaws, J. Biomed. Mater. Res. B., Appl. Biomater., 2007, vol. 80, pp. 377–385.

    Article  Google Scholar 

  • Sparks, M.S., Kerns, D.G., Wilson, T.G., Hallmon, W.W., Spears, R., and Haghighat, N., Bone Regeneration around Implants in the Canine Mandible with Cultured Fibroblasts in Polyglactin Mesh, J. Periodontol., 2007, vol. 78, pp. 1276–1287.

    Article  PubMed  Google Scholar 

  • Stentport, V.F. and Johansson, C.B., Enamel Matrix Derivative and Titanium Implants. An Experimental Pilot Study in the Rabbit, J. Clinic. Periodontol., 2003, vol. 30, pp. 359–364.

    Article  Google Scholar 

  • Susin, C., Qahash, M., Hall, J., Sennerby, L., and Wikesjo, U.M., Histological and Biomechanical Evaluation of Phosphorylcholine-Coated Titanium Implants, J. Clin. Periodontol., 2008, vol. 35, pp. 270–275.

    Article  CAS  PubMed  Google Scholar 

  • Vehov, J.W.M., Spauwen, P.H.M., and Jansen, J.A., Bone Formation in Calcium-Phosphate-Coated Titanium Mesh, Biomaterials, 2000, vol. 21, pp. 2003–2009.

    Article  Google Scholar 

  • Voronkina, I.V., Gorelik, Yu.V., Are, A.F., Kalmykova, N.V., Potokin, I.L., and Pinaev, G.P., The Peculiarities of Attachment and Spreading of Normal and Transformed Epithelial Human Cells on Different Extracellular Matrix Proteins, in Intermolecular Cross-Talk in Tumor Metastasis, Skateris, G.G. and Nicolson, G.L., Eds., IOS Press, Amsterdam, 1999, vol. 311, pp. 171–181.

    Google Scholar 

  • Wang, J., Layrolle, P., Stigter, M., and de Groot, K., Biomimetic and Electrolytic Calcium Phosphate Coatings on Titanium Alloy: Physicochemical Characteristics and Cell Attachment, Biomaterials, 2004, vol. 25, pp. 583–592.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Blinova.

Additional information

Original Russian Text © M.I. Blinova, N.M. Yudintzeva, N.S. Nikolaenko, I.L. Potokin, G. Raykhtsaum, M.R. Pitkin, G.P. Pinaev, 2010, published in Tsitologiya, Vol. 52, No. 10, 2010, pp. 835–843.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blinova, M.I., Yudintzeva, N.M., Nikolaenko, N.S. et al. Cell cultivation on porous titanium implants with various structures. Cell Tiss. Biol. 4, 572–579 (2010). https://doi.org/10.1134/S1990519X10060088

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X10060088

Keywords

Navigation