Skip to main content
Log in

Adaptive Optimization of Visual Sensitivity

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Sensory systems adapt to environmental change. It has been argued that adaptation should have the effect of optimizing sensitivity to the new environment. Here we consider a framework in which this premise is made concrete using an economic normative theory of visual motion perception. In this framework, visual systems adapt to the environment by reallocating their limited neural resources. The allocation is optimal when uncertainties about different aspects of stimulation are balanced. This theory makes predictions about visual sensitivity as a function of environmental statistics. Adaptive optimization of the visual system should be manifested as a change in sensitivity for an observer and for the underlying motion-sensitive neurons. We review evidence supporting these predictions and examine effects of adaptation on the neuronal representation of visual motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:

Similar content being viewed by others

Notes

  1. These uncertainties concern location and frequency content of stimuli, defined according to the information theory of Gabor6.

  2. Change maps for all subjects appear in Fig S2 in Gepshtein et al.9.

  3. This dimension could be space or time. For example, when x represents space, the larger number of lower level cells, from which the cell I receive information, corresponds to a larger receptive field size of I.

References

  1. Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130

    Article  Google Scholar 

  2. Barlow HB (1990) A theory about the functional role and synaptic mechanism of visual after-effects. In: Blakemore C (ed) Vision: coding and efficiency. Cambridge University Press, Cambridge, pp 363–375

    Google Scholar 

  3. Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166. https://doi.org/10.1146/annurev.neuro.24.1.139

    Article  Google Scholar 

  4. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48

    Article  Google Scholar 

  5. Dong D, Atick J (1995) Statistics of natural time-varying images. Netw Comput Neural Syst 6:345–358. https://doi.org/10.1088/0954-898X/6/3/003

    Article  Google Scholar 

  6. Gabor D (1946) Theory of communication. Institution of electrical engineers. 93 (Part III):429–457

  7. Gepshtein S (2014) Economy of vision and adaptive reallocation of neural resources. J Vis 14:15. https://doi.org/10.1167/14.15.11

    Article  Google Scholar 

  8. Gepshtein S, Jurica P, Tyukin I, van Leeuwen C, Albright TD (2012) Receptive field plasticity and visual adaptation. 467.16. 2012 Neuroscience Meeting Planner. Society for Neuroscience, New Orleans

  9. Gepshtein S, Lesmes LA, Albright TD (2013) Sensory adaptation as optimal resource allocation. Proc Natl Acad Sci USA 110(11):4368–4373

    Article  Google Scholar 

  10. Gepshtein S, Tyukin I, Kubovy M (2007) The economics of motion perception and invariants of visual sensitivity. J Vis 7(8):1–18

    Article  Google Scholar 

  11. Jurica P, Gepshtein S, Tyukin I, van Leeuwen C (2013) Sensory optimization by stochastic tuning. Psychol Rev 120(4):798–816

    Article  Google Scholar 

  12. Kelly DH (1979) Motion and vision. II. Stabilized spatio-temporal threshold surface. J Opt Soc Am. 69:1340–1349

    Article  Google Scholar 

  13. Knill DC, Richards W (1996) Perception as Bayesian inference. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Krekelberg B, van Wezel RJ, Albright TD (2006) Adaptation in macaque MT reduces perceived speed and improves speed discrimination. J Neurophysiol 95:255–270

    Article  Google Scholar 

  15. Kujala J, Lukka T (2006) Bayesian adaptive estimation: the next dimension. J Math Psychol 50(4):369–389

    Article  Google Scholar 

  16. Lesmes LA, Gepshtein S, Lu Z-L, Albright T (2009) Rapid estimation of the spatiotemporal contrast sensitivity surface. J Vis 9(8):696. https://doi.org/10.1167/9.8.696

    Article  Google Scholar 

  17. Lesmes LA, Jeon S-T, Lu Z-L, Dosher BA (2006) Baysian adaptive estimation of threshold versus contrast external noise functions: the quick TvC method. Vis Res 46:3160–3176

    Article  Google Scholar 

  18. Lesmes LA, Lu Z-L, Baek J, Albright TD (2010) Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. J Vis 10(3):1–21

    Article  Google Scholar 

  19. Maloney LT (2002) Statistical decision theory and biological vision. In: Heyer D, Mausfeld R (eds) Perception and the physical world. Wiley, New York, pp 145–189

    Google Scholar 

  20. Mather G, Verstraten F, Anstis SM (1998) The motion aftereffect: a modern perspective. The MIT Press, Cambridge, p 220

    Google Scholar 

  21. Nakayama K (1985) Biological image motion processing: a review. Vis Res 25:625–660

    Article  Google Scholar 

  22. Paulsen O, Sejnowski TJ (2000) Natural patterns of activity and long-term synaptic plasticity. Curr Opin Neurobiol 10:172–179. https://doi.org/10.1016/S0959-4388(00)00076-3

    Article  Google Scholar 

  23. Pawar A, Laddis P, Gepshtein S, Albright T (2013) Measuring the spatiotemporal contrast sensitivity function in the macaque monkey. J Vis 13(9):366. https://doi.org/10.1167/13.9.366 http://jov.arvojournals.org/article.aspx?articleid=2142473

  24. Robson JG (1966) Spatial and temporal contrast sensitivity functions of the visual system. J Opt Soc Am. 56:1141–1142

    Article  Google Scholar 

  25. Robson JG (1993) Contrast sensitivity: One hundred years of clinical measurement. In: Shapley RM, Lam DMK (eds). Contrast sensitivity. MIT Press, Cambridge pp 253–267

  26. Sakitt B, Barlow HB (1982) A model for the economical encoding of the visual image in cerebral cortex. Biol Cybern 43:97–108

    Article  Google Scholar 

  27. Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1215

    Article  Google Scholar 

  28. Stocker A, Simoncelli E (2005) Sensory adaptation within a bayesian framework for perception. In: Weiss Y, Scholkopf B, Platt J (eds) NIPS advances in neural information processing systems, 18. MIT Press, Cambridge, pp 1291–1298

    Google Scholar 

  29. Thiele A, Dobkins KR, Albright TD (2000) Neural correlates of contrast detection at threshold. Neuron 26:715–724

    Article  Google Scholar 

  30. Watson AB, Ahumada AJ (2016) The pyramid of visibility. Human Vis Electron Imag 2016:1–6. https://doi.org/10.2352/ISSN.2470-1173.2016.16HVEI-102

    Google Scholar 

  31. Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nat Neurosci 5:598–604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Albright.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gepshtein, S., Albright, T.D. Adaptive Optimization of Visual Sensitivity. J Indian Inst Sci 97, 423–434 (2017). https://doi.org/10.1007/s41745-017-0056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-017-0056-y

Keywords

Navigation