Skip to main content
Log in

Thermodynamic Properties at Saturation Derived from Experimental Two-Phase Isochoric Heat Capacity of 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New measurements are reported for the isochoric heat capacity of the ionic liquid substance 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C6mim][NTf2]). These measurements extend the ranges of our earlier study (Polikhronidi et al. in Phys Chem Liq 52:657, 2014) by 5 % of the compressed liquid density and by 75 K. An adiabatic calorimeter was used to measure one-phase \((C_{\mathrm{V1}})\) liquid and two-phase \((C_{\mathrm{V2}})\) liquid + vapor isochoric heat capacities, densities \((\rho _s)\), and phase-transition temperatures \((T_s)\) of the ionic liquid (IL) substance. The combined expanded uncertainty of the density \(\rho \) and isochoric heat capacity \(C_\mathrm{V}\) measurements at the 95 % confidence level with a coverage factor of \(k = 2\) is estimated to be 0.15 % and 3 %, respectively. Measurements are concentrated in the immediate vicinity of the liquid + vapor phase-transition curve, in order to closely observe phase transitions. The present measurements and those of our earlier study are analyzed together and are presented in terms of thermodynamic properties \((T_s\), \(\rho _s\), \(C_{\mathrm{V1}}\) and \(C_{\mathrm{V2}})\) evaluated at saturation and in terms of key-derived thermodynamic properties \(C_\mathrm{P}\), \(C_\mathrm{S}\), \(W_\mathrm{S}^{{\prime }}\), \(K_{\mathrm{TS}}^{{\prime }}\), \(\left( {\partial P/\partial T} \right) _{\mathrm{V}}^{\prime }\), and \(\left( {\partial V/\partial T} \right) _\mathbf{P}^{\prime })\) on the liquid + vapor phase-transition curve. A thermodynamic relation by Yang and Yang is used to confirm the internal consistency of measured two-phase heat capacities \(C_{\mathrm{V2}} \), which are observed to fall perfectly on a line as a function of specific volume at a constant temperature. The observed linear behavior is exploited to evaluate contributions to the quantity \(C_{\mathrm{V2}} = f(V, T)\) from chemical potential \(C_{{\mathrm{V}\upmu }} =-T\frac{\mathrm{d}^{{2}}\mu }{\mathrm{d}T^{2}}\) and from vapor pressure \(C_{\mathrm{VP}} =VT\frac{\mathrm{d}^{2}P_{\mathrm{S}} }{\mathrm{d}T^{2}}\). The physical nature and specific details of the temperature and specific volume dependence of the two-phase isochoric heat capacity and some features of the other derived thermodynamic properties of IL at liquid saturation curve are considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Commercial equipment, instruments, or materials are identified only in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by NIST, nor does it imply that the products identified are necessarily the best available for the purpose.

References

  1. R.D. Chirico, V. Diky, J.W. Magee, M. Frenkel, K.N. Marsh, Pure Appl. Chem. 81, 791 (2009)

    Article  Google Scholar 

  2. K.N. Marsh, J.F. Brennecke, R.D. Chirico, M. Frenkel, A. Heintz, J.W. Magee, C.J. Peters, L.P.N. Rebelo, K.R. Seddon, Pure Appl. Chem. 81, 781 (2009)

    Article  Google Scholar 

  3. D.H. Zaitsau, G.J. Kabo, A.A. Strechan, Y.U. Paulechka, A. Tschersich, S.P. Verevkin, A. Heintz, J. Phys. Chem. A 110, 7303 (2006)

    Article  Google Scholar 

  4. M.A.A. Rocha, C.F.R.A.C. Lima, L.R. Gomes, B. Schröder, J.A.P. Coutinho, I.M. Marrucho, J.M.S.S. Esperanca, L.P.N. Rebelo, K. Shimizu, J.N. Canongia Lopes, L.M.N.B.F. Santos, J. Phys. Chem. B 115, 10919 (2011)

    Article  Google Scholar 

  5. S. Bochmann, G. Hefter, J. Chem. Eng. Data 55, 1808 (2010)

    Article  Google Scholar 

  6. M. Tariq, A.P. Serro, J.L. Mata, B. Saramago, J.M.S.S. Esperanca, J.N. Canongia Lopes, L.P.N. Rebelo, Fluid Phase Equilib. 294, 131 (2010)

    Article  Google Scholar 

  7. A. Diedrichs, J. Gmehling, Fluid Phase Equilib. 244, 68 (2006)

    Article  Google Scholar 

  8. A.V. Blokhin, Y.U. Paulechka, G.J. Kabo, J. Chem. Eng. Data 51, 1377 (2006)

    Article  Google Scholar 

  9. Y. Shimizu, Y. Ohte, Y. Yamamura, K. Saito, T. Atake, J. Phys. Chem. B 110, 13970 (2006)

    Article  Google Scholar 

  10. D.G. Archer, Thermodynamic Properties of 1-Hexyl-3-Methylimidazolium bis (Trifluoromethylsulfonyl) Imide (National Institute of Standards and Technology, Gaithersburg, MD, 2006). Investigation Report-6645

  11. R. Ge, C. Hardacre, J. Jacquemin, P. Nancarrow, D.W. Rooney, J. Chem. Eng. Data 53, 2148 (2008)

    Article  Google Scholar 

  12. J.M. Crosthwaite, M.J. Muldoon, J.K. Dixon, J.L. Anderson, J.F. Brennecke, J. Chem. Thermodyn. 37, 559 (2005)

    Article  Google Scholar 

  13. J. Safarov, R. Hamidova, S. Zepik, H. Schmidt, I. Kul, A. Shakhverdiev, E. Hassel, J. Mol. Liquids 187, 137 (2013)

    Article  Google Scholar 

  14. D.H. Zaitsau, S.P. Verevkin, V.N. Emel’yanenko, A. Heitntz, Chem. Phys. Chem. 12, 3609 (2011)

    Google Scholar 

  15. E.J. González, A. Dominguez, E.A. Macedo, J. Chem. Thermodyn. 47, 300 (2012)

    Article  Google Scholar 

  16. R. Kato, J. Gmehling, J. Chem. Thermodyn. 37, 603 (2005)

    Article  Google Scholar 

  17. R.G. Azevedo, J.M.S.S. Esperança, J. Szydlowski, Z.P. Visak, P.F. Piers, H.J.R. Guedes, L.P.N. Rebelo, J. Chem. Thermodyn. 37, 888 (2005)

    Article  Google Scholar 

  18. A. Muhammad, M.I. Abdul Mutalib, C.D. Wilfred, T. Murugesan, A. Shafeed, J. Chem. Thermodyn. 40, 1433 (2008)

  19. J.M.S.S. Esperança, H.J.R. Guedes, J.N.C. Lopes, L.P.N. Rebelo, J. Chem. Thermodyn. 53, 867 (2008)

    Google Scholar 

  20. J.A. Widegren, J.W. Magee, J. Chem. Eng. Data 52, 2331 (2007)

    Article  Google Scholar 

  21. T.J. Hughes, T. Syed, B.F. Graham, K.N. Marsh, E.F. May, J. Chem. Eng. Data 56, 2153 (2011)

    Article  Google Scholar 

  22. J. Jacquemin, R. Ge, P. Nancarrow, D.W. Rooney, M.F. Costa Gomes, A.A.H. Padua, C. Hardacre, J. Chem. Eng. Data 53, 716 (2008)

    Article  Google Scholar 

  23. M.E. Kandil, K.N. Marsh, J. Chem. Eng. Data 52, 2382 (2007)

    Article  Google Scholar 

  24. A. Ahosseini, B. Sensenich, L.R. Weatherly, A.M. Scurto, J. Chem. Eng. Data 55, 1611 (2010)

    Article  Google Scholar 

  25. M. Iguchi, Y. Hiraga, Y. Sato, T.M. Aida, M. Watanabe, R.L. Smith Jr., J. Chem. Eng. Data 59, 709 (2014)

    Article  Google Scholar 

  26. R.G. Seoane, S. Corderí, E. Gómez, N. Calvar, E.J. González, E.A. Macedo, A. Domínguez, Ind. Eng. Chem. Res. 51, 2492 (2012)

    Article  Google Scholar 

  27. N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, J.W. Magee, J.T. Wu, Phys. Chem. Liq. 52, 657 (2014)

    Article  Google Scholar 

  28. N.G. Polikhronidi, I.M. Abdulagatov, J.W. Magee, G.V. Stepanov, R.G. Batyrova, Int. J. Thermophys. 28, 163 (2007)

    Article  ADS  Google Scholar 

  29. Y.U. Paulechka, G.J. Kabo, J. Phys. Chem. B 112, 15708 (2008)

    Article  Google Scholar 

  30. C.N. Yang, C.P. Yang, Phys. Rev. Lett. 13, 303 (1964)

    Article  ADS  Google Scholar 

  31. M.E. Fisher, G. Orkoulas, Phys. Rev. 85, 696 (2000)

    ADS  Google Scholar 

  32. G. Orkoulas, M.E. Fisher, C. Ustün, J. Chem. Phys. 113, 7530 (2000)

    Article  ADS  Google Scholar 

  33. Y.C. Kim, M.E. Fisher, G. Orkoulas, Phys. Rev. E 67, 061506–1 (2003)

    Article  ADS  Google Scholar 

  34. K.I. Amirkhanov, B.G. Alibekov, D.I. Vikhrov, V.A. Mirskaya, Isochoric Heat Capacity and other Caloric Properties of Hydrocarbons (Russian Academy of Sciences, Makhachkala, 1988)

    Google Scholar 

Download references

Acknowledgments

I. M. Abdulagatov thanks the Applied Chemicals and Materials Division at the National Institute of Standards and Technology for the opportunity to work as a Guest Researcher at NIST during the course of this research. This work was supported by a Russian Foundation of Basic Research (RFBR) Grant NHK13-08-00114/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Additional information

Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polikhronidi, N.G., Batyrova, R.G., Abdulagatov, I.M. et al. Thermodynamic Properties at Saturation Derived from Experimental Two-Phase Isochoric Heat Capacity of 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide. Int J Thermophys 37, 103 (2016). https://doi.org/10.1007/s10765-016-2109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2109-2

Keywords

Navigation