Skip to main content
Log in

Bijective codon transformations show genetic code symmetries centered on cytosine’s coding properties

  • Original Article
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Homology of some RNAs with template DNA requires systematic exchanges between nucleotides. Such exchanges produce ‘swinger’ RNA along 23 bijective transformations (nine symmetric, X ↔ Y; and 14 asymmetric, X → Y → Z → X, for example A ↔ C and A → C → G → A, respectively). Here, analyses compare amino acids coded by swinger-transformed codons to those coded by untransformed codons, defining coding invariance after transformations. Swinger transformations cluster according to coding invariance in four groups characterized by transformations into cytosine (C = C, T → C, A → C, and G → C). C’s central mutational coding role shows that swinger transformations constrained genetic code genesis. Coding invariance post-transformations correlate positively/negatively with mitochondrial swinger transcription/lepidosaurian body temperature. Presumably, low/high temperatures stabilize/revert rare swinger polymerization modes, producing long swinger sequences/point mutations, respectively. Coding invariance after swinger transformations might compensate effects of swinger polymerizations in species with low body temperatures. Hypothetically, swinger transcription increased coding potential of RNA self-replicating protolife systems under heating/cooling cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed A, Frey G, Michel CJ (2007) Frameshift signals in genes associated with the circular code. Silico Biol 7(2):155–168

    CAS  Google Scholar 

  • Ahmed A, Frey G, Michel CJ (2010) Essential molecular functions associated with the circular code evolution. J Theor Biol 264(2):613–622

    Article  CAS  PubMed  Google Scholar 

  • Alexe G, Fuku N, Bilal E, Ueno H, Nishigaki Y, Fujita Y, Ito M, Arai Y, Hirose N, Bhanot G, Tanaka M (2007) Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population. Hum Genet 121:347–356

    Article  PubMed  Google Scholar 

  • Archetti M, Di Giulio M (2007) The evolution of the genetic code took place in an anaerobic environment. J Theor Biol 245(1):169–174

    Article  CAS  PubMed  Google Scholar 

  • Ardell DH (1998) On error minimization in a sequential origin of the standard genetic code. J Mol Evol 47(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Ardell DH, Sella G (2001) On the evolution of redundancy in genetic codes. J Mol Evol 53(4–5):269–281

    Article  CAS  PubMed  Google Scholar 

  • Arquès DG, Michel CJ (1996) A complementary circular code in the protein coding genes. J Theor Biol 182(1):45–58

    Article  PubMed  Google Scholar 

  • Arquès DG, Michel CJ (1997) A code in the protein coding genes. Biosystems 44(2):107–134

    Article  PubMed  Google Scholar 

  • Atkins JF, Steitz JA, Anderson CW, Model P (1979) Binding of mammalian ribosomes to MS2-phage RNA reveals an overlapping gene encoding a lysis function. Cell 18(2):247–256

    Article  CAS  PubMed  Google Scholar 

  • Barthélémy RM, Seligmann H (2016) Cryptic tRNAs in chaetognath mitochondrial genomes? Comput Biol Chem 62:119–132

    Article  PubMed  CAS  Google Scholar 

  • Bashford JD, Tsohantis I, Jarvis PD (1998) A supersymmetric model for the evolution of the genetic code. Proc Natl Acad Sci USA 95:987–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilal E, Rabadan R, Alexe G, Fuku N, Ueno H, Nishigaki Y, Fujita Y, Ito M, Arai Y, Hirose N, Ruckenstein A, Bhanot G, Tanaka M (2008) Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan. PLoS ONE 3(6):e2421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blazej P, Wnetrzak M, Mackiewicz P (2016) The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization. Biosystems 150:61–72

    Article  CAS  PubMed  Google Scholar 

  • Bloch DO, McArthur B, Widdowson R, Spector D, Guimaraes RC, Smith J (1984) tRNA-rRNA sequence homologies: a model for the origin of a common ancestor molecule, and prospects for its reconstruction. Orig Life 14(1–4):571–578

    Article  CAS  PubMed  Google Scholar 

  • Breton S, Milani L, Ghiselli F, Guerra D, Stewart DT, Passamonti M (2014) A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet 30(12):555–564

    Article  CAS  PubMed  Google Scholar 

  • Capt C, Passamonti M, Breton S (2016) The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA A 27(5):3098–3101

    CAS  Google Scholar 

  • Carter CW Jr, Li L, Weinreb V, Collier M, Gonzalez-Rivera K, Jimenez-Rodriguez M, Erdogan O, Kuhlman B, Ambroggio X, Williams T, Cahndrasekharan SN (2014) The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biol Direct 9:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandrasekaran SN, Yardimci GG, Erdogan O, Roach J, Carter CW (2013) Statistical evaluation of the Rodin-Ohno hypothesis: sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases. Mol Biol Evol 30(7):1588–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cusack S (1997) Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 7:881–889

    Article  CAS  PubMed  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. Atlas Protein Seq Struct 5(s3):345–351

    Google Scholar 

  • Delarue M (2007) An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giulio M (1989) The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol 29:288–293

    Article  PubMed  Google Scholar 

  • Di Giulio M (1991) On the relationships between the genetic code coevolution hypothesis and the physicochemical hypothesis. Z Naturforsch C 46(3–4):305–312

    PubMed  Google Scholar 

  • Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57(6):721–730

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2005) Structuring of the genetic code took place at acidic pH. J Theor Biol 237(2):219–226

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2013) The origin of the genetic code in the ocean abysses: new comparisons confirm old observations. J Theor Biol 333:109–116

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2016) The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory. J Theor Biol 399:134–140

    Article  PubMed  CAS  Google Scholar 

  • Ding SW, Anderson BJ, Haase HR, Symons RH (1994) New overlapping gene encoded by the cucumber mosaic-virus genome. Virology 198(2):593–601

    Article  CAS  PubMed  Google Scholar 

  • Dunnill P (1966) Triplet nucleotide-amino-acid pairing: a stereochemical basis for the division between protein and non-protein amino-acids. Nature 210(5042):1265–1267

    Article  CAS  PubMed  Google Scholar 

  • El Houmami N, Seligmann H (2017) Evolution of nucleotide punctuation marks: from structural to linear signals. Front Genet 8:36

    Article  PubMed  PubMed Central  Google Scholar 

  • El Soufi K, Michel CJ (2014) Circular code motifs in the ribosome decoding center. Comput Biol Chem 52:9–17

    Article  PubMed  CAS  Google Scholar 

  • El Soufi K, Michel CJ (2015) Circular code motifs near the ribosome decoding center. Comput Biol Chem 59 Pt A:158–176

  • El Soufi K, Michel CJ (2016) Circular code motifs in genomes of eukaryotes. J Theor Biol 408:198–212

    Article  PubMed  Google Scholar 

  • Elzanowski A, Ostell J (2016) The genetic codes. https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  • Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    Article  CAS  PubMed  Google Scholar 

  • Fagan CE, Maehigashi T, Dunkle JA, Miles SJ, Dunham CM (2014) Structural insights into translational recoding by frameshift suppressor tRNASufJ. RNA 20(12):1944–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farabaugh PJ, Bjoerk GR (1999) How translational accuracy influences reading frame maintenance. EMBO J 18(6):1427–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy RM (2011) Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 6:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fimmel E, Danielli A, Strüngmann L (2013) On dichotomic classes and bijections of the genetic code. J Theor Biol 336:221–230

    Article  PubMed  Google Scholar 

  • Fimmel E, Giannerini S, Gonzalez DL, Strüngmann L (2015a) Circular codes, symmetries and transformations. J Math Biol 70(7):1623–1644

    Article  PubMed  Google Scholar 

  • Fimmel E, Giannerini S, Gonzalez DL, Strüngmann L (2015b) Dinucleotide circular codes and bijective transformations. J Theor Biol 386:159–165

    Article  CAS  PubMed  Google Scholar 

  • Firth AE, Blitvich BJ, Wills NM, Miller CL, Atkins JF (2010) Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology 399(1):153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeland SJ, Hurst L (1998) The genetic code is one in a million. J Mol Evol 47(3):238–248

    Article  CAS  PubMed  Google Scholar 

  • Freeland SJ, Wu T, Keulmann N (2003) The case for an error minimizing standard genetic code. Orig Life Evol Biosph 33(4–5):457–477

    Article  CAS  PubMed  Google Scholar 

  • Fukuda Y, Nakayama Y, Tomita M (2003) On dynamics of overlapping genes in bacterial genomes. Gene 323:181–187

    Article  CAS  PubMed  Google Scholar 

  • Gillis D, Massar S, Cerf N, Rooman M (2001) Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2(11):49

    Google Scholar 

  • Goncearenco A, Berezovsky IN (2014) The fundamental tradeoff in genomes and proteomes of prokaryotes established by the genetic code, codon entropy, and physics of nucleic acids and proteins. Biol Direct 9:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez DL, Giannerini S, Rosa R (2011) Circular codes revisited: a statistical approach. J Theor Biol 275(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez DL, Giannerini S, Rosa R (2013) On the origin of the mitochondrial genetic code: towards a unified mathematical framework for the management of genetic information. Nat Preced. 10.1038/npre.2012.7136.1

    Google Scholar 

  • Gonzalez DL, Giannerini S, Rosa R (2016) The non-power model of the genetic code: a paradigm for interpreting genomic information. Philos Trans R Soc A 374:20150062

    Article  CAS  Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185(4):862–864

    Article  CAS  PubMed  Google Scholar 

  • Guilloux A, Jestin JL (2012) The genetic code and its optimization for kinetic energy conservation in polypeptide chains. Biosystems 109(2):141–144

    Article  CAS  PubMed  Google Scholar 

  • Gumbel M, Fimmel E, Danielli A, Strüngmann L (2015) On models of the genetic code generated by binary dichotomic algorithms. Biosystems 128:9–18

    Article  CAS  PubMed  Google Scholar 

  • Hagervall TG, Tuohy TM, Atkins JF, Björk GR (1993) Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J Mol Biol 232(3):756–765

    Article  CAS  PubMed  Google Scholar 

  • Haig D, Hurst L (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    Article  CAS  PubMed  Google Scholar 

  • Herzog H, Darby K, Ball H, Hort Y, Beck-Sickinger A, Shine J (1997) Overlapping gene structure of the human neuropeptide Y receptor subtypes Y1 and Y5 suggests coordinate transcriptional regulation. Genomics 41(3):315–319

    Article  CAS  PubMed  Google Scholar 

  • Hornos JEM, Braggion L, Magini M, Forger M (2004) Symmetry preservation in the evolution of the genetic code. IUBMB Life 56(3):125–130

    Article  CAS  PubMed  Google Scholar 

  • Itzkovitz S, Alon U (2007) The genetic code is nearly optimal for allowing additional information within protein-coding sequences. Genome Res 17(4):405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jestin JL, Soulé C (2007) Symmetries by base substitutions in the genetic code predict 2′2′ or 3′3′ aminoacylation of tRNAs. J Theor Biol 247(2):391–394

    Article  CAS  PubMed  Google Scholar 

  • José MV, Zamudio GS, Morgado ER (2017) A unified model of the standard genetic code. R Soc Open Sci 4(3):160908

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan NM, Seligmann H, Rao BJ (2008) Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications. BMC Genomics 9:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehmann J (2000) Physico-chemical constraints connected with the coding properties of the genetic system. J Theor Biol 202:129–144

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Rodriguez L, Erdogan O, Jimenez-Rodriguez M, Gonzalez-Rivera K, Williams T, Li L, Weinreb V, Collier M, Chandrasekaran SN, Ambroggio X, Kuhlman B, Carter CW (2015) Functional class I and II amino acid-activating enzymes can be coded by opposite strands of the same gene. J Biol Chem 290(32):19710–19725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiri S, Bauer AM, Chirio L, Colli GR, Das I, Doan TM, Feldman A, Herrera FC, Novosolov M, Pafilis P, Pincheira-Donoso D, Powney G, Torre-Carvajal O, Uetz P, Van Damme R (2013) Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Global Ecol Biogeogr 22:834–845

    Article  Google Scholar 

  • Michel CJ (2013) Circular code motifs in transfer RNAs. Comput Biol Chem 45:17–29

    Article  CAS  PubMed  Google Scholar 

  • Michel CJ (2014) A genetic scale of reading frame coding. J Theor Biol 355:83–94

    Article  CAS  PubMed  Google Scholar 

  • Michel CJ (2015a) An extended genetic scale of reading frame coding. J Theor Biol 365:164–174

    Article  CAS  PubMed  Google Scholar 

  • Michel CJ (2015b) The maximal C(3) self-complementary trinucleotide circular code X in genes of bacteria, eukaryotes, plasmids and viruses. J Theor Biol 380:156–177

    Article  CAS  PubMed  Google Scholar 

  • Michel CJ (2017) The maximal C3 self-complementary trinucleotide circular code X in genes of bacteria, archaea, eukaryotes, plasmids and viruses. Life (Basel) 7(2):E20

    Google Scholar 

  • Michel CJ, Seligmann H (2014) Bijective transformation circular codes and nucleotide exchanging RNA transcription. Biosystems 118:39–50

    Article  CAS  PubMed  Google Scholar 

  • Moravec J, El Din SB, Seligmann H, Sivan N, Werner YL (1999) Systematics and distribution of the Acanthodactylus pardalis group (Reptilia: Sauria: Lacertidae) in Egypt and Israel. Zool Middle East 17:21–50

    Article  Google Scholar 

  • Murgola EJ, Prather NE, Mims BH, Pagel FT, Hijazi KA (1983) Anticodon shift in tRNA: a novel mechanism in missense and nonsense suppression. Proc Natl Acad Sci USA 80(16):4936–4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor M (1998) tRNA imbalance promotes -1 frameshifting via near-cognate decoding. J Mol Biol 279(4):727–736

    Article  PubMed  Google Scholar 

  • Pelc SR, Welton MG (1966) Stereochemical relationship between coding triplets and amino-acids. Nature 209(5026):868–870

    Article  CAS  PubMed  Google Scholar 

  • Petoukhov SV (2017) Genetic coding and united-hypercomplex systems in the models of algebraic biology. Biosystems 158:31–46

    Article  CAS  PubMed  Google Scholar 

  • Phelps SS, Gaudin C, Yoshizawa S, Benitez C, Fourmy D, Joseph S (2006) Translocation of a tRNA with an extended anticodon through the ribosome. J Mol Biol 360(3):610–622

    Article  CAS  PubMed  Google Scholar 

  • Popov O, Segal DM, Trifonov EN (1996) Linguistic complexity of protein sequences as compared to texts of human languages. Biosystems 38(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Riddle DL, Carbon J (1973) Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nat New Biol 242:230–234

    Article  CAS  PubMed  Google Scholar 

  • Rodin SN, Ohno S (1995) 2 types of aminoacyl-transfer-RNA synthetases could be originally encoded by complementary strands of the same nucleic-acid. Orig Life Evol Biosph 25(6):565–589

    Article  CAS  PubMed  Google Scholar 

  • Rodin SN, Ohno S (1997) Four primordial modes of tRNA-synthetase recognition, determined by the (G, C) operational code. Proc Natl Acad Sci USA 94(10):5183–5188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodin S, Ohno S, Rodin A (1993) Transfer-RNAs with complementary codons—could they reflect early evolution of discriminative genetic-code adapters. Proc Natl Acad Sci USA 90(10):4723–4727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Root-Bernstein ME, Root-Bernstein R (2015) The ribosome as a missing link in the evolution of life. J Theor Biol 367:130–158

    Article  CAS  PubMed  Google Scholar 

  • Rumer YB (1966) About the codon systematization in the genetic code. Proc Acad Sci USSR 167:1393–1394

    CAS  Google Scholar 

  • Scherbakov DV, Garber MB (2000) Overlapping genes in bacterial and phage genomes. Mol Biol 34(4):485–495

    Article  CAS  Google Scholar 

  • Seligmann H (1998) Evidence that minor directional asymmetry is functional in lizard hindlimbs. J Zool (Lond) 245:205–208

    Article  Google Scholar 

  • Seligmann H (2000) Evolution and ecology of developmental processes and of the resulting morphology: directional asymmetry in hindlimbs of Agamidae and Lacertidae (Reptilia: Lacertilia). Biol J Linn Soc 69(4):461–481

    Article  Google Scholar 

  • Seligmann H (2006) Error propagation across levels of organization: From chemical stability of ribosomal RNA to developmental stability. J Theor Biol 242(1):69–80

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2007) Cost minimization of ribosomal frameshifts. J Theor Biol 249(1):162–167

    Article  PubMed  Google Scholar 

  • Seligmann H (2010a) The ambush hypothesis at the whole-organism level: off frame, ‘hidden’ stops in vertebrate mitochondrial genes increase developmental stability. Comput Biol Chem 34(2):80–85

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2010b) Undetected antisense tRNAs in mitochondrial genomes? Biol Direct 5:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seligmann H (2010c) Avoidance of antisense, antiterminator tRNA anticodons in vertebrate mitochondria. Biosystems 101(1):42–50

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2010d) Do anticodons of misacylated tRNAs preferentially mismatch codons coding for the misloaded amino acid? BMC Mol Biol 11:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seligmann H (2010e) Positive correlations between molecular and morphological rates of evolution. J Theor Biol

  • Seligmann H (2011a) Two genetic codes, one genome: frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs. Biosystems 105(3):271–285

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2011b) Pathogenic mutations in antisense mitochondrial tRNAs. J Theor Biol 269(1):287–296

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2011c) Error compensation of tRNA misacylation by codon-anticodon mismatch prevents translational amino acid misinsertion. Comput Biol Chem 35(2):81–95

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2011d) Left-handed Sphenodons grow more slowly. In: Berhardt LV (ed.) Advances in medicine and biology, vol 24, Chap. 4, pp 185–206

  • Seligmann H (2012a) An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: antisense antitermination tRNAs UAR insert serine. J Theor Biol 298:51–76

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2012b) Coding constraints modulate chemically spontaneous mutational replication gradients in mitochondrial genomes. Curr Genomics 13(1):37–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seligmann H (2012c) Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case. Comput Biol Chem 41:18–34

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2012d) Overlapping genes coded in the 3′-to-5′-direction in mitochondrial genes and 3′-to-5′ polymerization of non-complementary RNA by an ‘invertase’. J Theor Biol 315:38–52

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2012e) Putative mitochondrial polypeptides coded by expanded quadruplet codons, decoded by antisense tRNAs with unusual anticodons. Biosystems 110(2):84–106

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2013a) Putative protein-encoding genes within mitochondrial rDNA and the D-Loop region. Chapter 4. In: Lin Z, Liu W (eds) Ribosomes: molecular structure, role in biological functions and implications for genetic diseases, pp 67–86

  • Seligmann H (2013b) Triplex DNA:RNA, 3′-to-5′ inverted RNA and protein coding in mitochondrial genomes. J Comput Biol 20(9):660–671

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2013c) Polymerization of non-complementary RNA: systematic symmetric nucleotide exchanges mainly involving uracil produce mitochondrial RNA transcripts coding for cryptic overlapping genes. Biosystems 111(3):156–174

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2013d) Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes. J Theor Biol 324:1–20

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2014a) Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts. Biosystems 125:22–31

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2014b) Species radiation by DNA replication that systematically exchanges nucleotides? J Theor Biol 363:216–222

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2015a) Phylogeny of genetic codes and punctuation codes within genetic codes. Biosystems 129:36–43

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2015b) Systematic exchanges between nucleotides: Genomic swinger repeats and swinger transcription in human mitochondria. J Theor Biol 348:70–77

    Article  CAS  Google Scholar 

  • Seligmann H (2015c) Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A ↔ T + C ↔ G in the mitogenome of Kamimuria wangi. Mitochondrial DNA A 27(4):2440–2446

    Google Scholar 

  • Seligmann H (2015d) Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides. J Theor Biol 387:154–165

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2015e) Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: case studies. Biosystems 135:1–8

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2016a) Systematically frameshifting by deletion of every 4th or 4th and 5th nucleotides during mitochondrial transcription: RNA self-hybridization regulates delRNA expression. Biosystems 142–143:43–51

    Article  PubMed  CAS  Google Scholar 

  • Seligmann H (2016b) Swinger RNA self-hybridization and mitochondrial non-canonical swinger transcription, transcription systematically exchanging nucleotides. J Theor Biol 399:84–91

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2016c) Translation of mitochondrial swinger RNAs according to tri-, tetra- and pentacodons. Biosystems 140:38–48

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2016d) Natural chymotrypsin-like-cleaved human mitochondrial peptides confirm tetra-, pentacodon, non-canonical RNA translations. Biosystems 147:78–93

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2016e) Unbiased mitoproteome analyses confirm non-canonical RNA, expanded codon translations. Comput Struct Biotechnol J 14:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seligmann H (2016f) Chimeric mitochondrial peptides from contiguous regular and swinger RNA. Comput Struct Biotechnol J 14:283–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seligmann H (2017a) Natural mitochondrial proteolysis confirms transcription systematically exchanging/deleting nucleotides, peptides coded by expanded codons. J Theor Biol 414:76–90

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2017b) Reviewing evidence for systematic transcriptional deletions, nucleotide exchanges, and expanded codons, and peptide clusters in human mitochondria. Biosystems 160:10–24

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Amzallag GN (2002) Chemical interactions between amino acid and RNA: multiplicity of the levels of specificity explains origin of the genetic code. Naturwissenschaften 89(12):542–551

    CAS  PubMed  Google Scholar 

  • Seligmann H, Krishnan NM (2006) Mitochondrial replication origin stability and propensity of adjacent tRNA genes to form putative replication origins increase developmental stability in lizards. J Exp Zool B Mol Dev Evol 306B(5):433–449

    Article  CAS  Google Scholar 

  • Seligmann H, Labra A (2013) Tetracoding increases with body temperature in Lepidosauria. Biosystems 114(3):155–163

    Article  PubMed  Google Scholar 

  • Seligmann H, Pollock DD (2004) The ambush hypothesis: hidden stop codons prevent off-frame gene reading. DNA Cell Biol 23(10):701–705

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Raoult D (2016) Unifying view of stem-loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses. Curr Opin Microbiol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Warthi G (2017) Genetic code optimization for cotranslational protein folding: codon directional asymmetry correlates with antiparallel betasheets, tRNA synthetase classes. Comput Struct Biotechnol J 12(15):412–424

    Article  CAS  Google Scholar 

  • Seligmann H, Beiles A, Werner YL (2003a) Avoiding injury and surviving injury: two coexisting evolutionary strategies in lizards. Biol J Linn Soc 78(3):307–324

    Article  Google Scholar 

  • Seligmann H, Beiles A, Werner YL (2003b) More injuries in left-footed individual lizards and Sphenodon. J Zool (Lond) 260:129–144

    Article  Google Scholar 

  • Seligmann H, Moravec J, Werner YL (2008) Morphological, functional and evolutionary aspects of tail autotomy and regeneration in the ‘living fossil’ Sphenodon (Reptilia: Rhynchocephalia). Biol J Linn Soc 93(4):721–743

    Article  Google Scholar 

  • Sella G, Ardell DH (2006) The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J Mol Evol 63(3):297–313

    Article  CAS  PubMed  Google Scholar 

  • Shsherbak VI (1989) Rumer’s rule and transformation in the context of the co-operative symmetry of the genetic code. J Theor Biol 1139(2):271–276

    Article  Google Scholar 

  • Shu JJ (2017) A new integrated symmetrical table for genetic codes. Biosystems 151:21–26

    Article  CAS  PubMed  Google Scholar 

  • Sojo V, Herschy B, Whicher A, Camprubi E, Lane E (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16(2):181–197

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Cabrera M, Gonzalez M, Larruga M, Takeyasu T, Fuku N, Guo LJ, Hirose R, Fujita Y, Kurata M, Shinoda K, Umetsu K, Yamada Y, Oshida Y, Sato Y, Sattori N, Mizuno Y, Arai Y, Hirose N, Ohta S, Ogawa O, Tanaka Y, Kawamori R, Shamoto-Nagai M, Maruyama W, Shimokata H, Suzuki R, Shimodaira H (2004) Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Res 14:1832–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor FJ, Coates D (1989) The code within codons. Biosystems 22(3):177–187

    Article  CAS  PubMed  Google Scholar 

  • Trifonov EN (2004) The triplet code from first principles. J Biomol Struct Dyn 22(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Trifonov EN (2008) Tracing life back to elements. Phys Life Rev 5(2):121–132

    Article  Google Scholar 

  • Tuohy TM, Thompson S, Gesteland RF, Atkins JF (1992) Seven, eight and nine-membered anticodon loop mutants of tRNA(2Arg) which cause +1 frameshifting. Tolerance of DHU arm and other secondary mutations. J Mol Biol 228(4):1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Wagner A (2000) The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics 154(3):1389–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker SE, Fredrick K (2006) Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons. J Mol Biol 360(3):599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams BAP, Slamovits CH, Patron NJ, Fast NM, Keeling PJ (2005) A high frequency of overlapping gene expression in compacted eukaryotic genomes. Proc Natl Acad Sci USA 102(31):10936–10941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong JT (1980) Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proc Natl Acad Sci USA 77(2):1083–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong JT (2005) Coevolution theory of the genetic code at age thirty. BioEssays 27:416–425

    Article  CAS  PubMed  Google Scholar 

  • Yampolsky LY, Stoltzfus A (2005) The exchangeability of amino acids in proteins. Genetics 170(4):1459–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code: the escaped triplet theory. Annu Rev Biochem 74:179–198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been carried out thanks to the support of the A*MIDEX Project (No. ANR-11-IDEX-0001-02. funded by the « Investissements d’Avenir » French Government program, managed by the French National Research Agency (ANR) and by the Méditerranée Infection and the National Research Agency under the program “Investissements d’avenir” reference ANR-10-IAHU-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Seligmann.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seligmann, H. Bijective codon transformations show genetic code symmetries centered on cytosine’s coding properties. Theory Biosci. 137, 17–31 (2018). https://doi.org/10.1007/s12064-017-0258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-017-0258-x

Keywords

Navigation