Skip to main content
Log in

Quantitative Scanning Probe Microscopy for Nanomechanical Forensics

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) was used to assess the indentation modulus M s and pull-off force F po in four case studies of distinct evidence types, namely hair, questioned documents, fingerprints, and explosive particle-surface interactions. In the hair study, M s decreased and F po increased after adding conditioner and bleach to the hair. For the questioned documents, M s and F po of two inks were markedly different; ballpoint pen ink exhibited smaller variations relative to the mean value than printer ink. The fingerprint case study revealed that both maximum height and F po decreased over a three-day period. Finally, the study on explosive particle-surface interactions illustrated that two fabrics exhibited similar M s, but different F po. Overall, it was found that AFM addresses needs in forensic science as defined by several federal agencies, in particular an improved ability to expand the information extracted from evidence and to quantify its evidentiary value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Connor SD, Komisarek KL, Baldeschwieler JD (1995) Atomic force microscopy of human hair cuticles: a microscopic study of environmental effects on hair morphology. J Invest Dermatol 105:96–99

    Article  Google Scholar 

  2. You H, Yu L (1997) Atomic force microscopy as a tool for study of human hair. Scanning 19:431–437

    Article  Google Scholar 

  3. McMullen RL, Kelty SP (2001) Investigation of human hair fibers using lateral force microscopy. Scanning 23:337–345

    Article  Google Scholar 

  4. Blach J, Loughlin W, Watson G, Myhra S (2001) Surface characterization of human hair by atomic force microscopy in the imaging and F-d modes. Int J Cosmet Sci 23:165–174

    Article  Google Scholar 

  5. Gurden SP, Monteiro VF, Longo E, Ferreira MMC (2004) Quantitative analysis and classification of AFM images of human hair. J Microscopy 215:13–23

    Article  MathSciNet  Google Scholar 

  6. LaTorre C, Bhushan B (2005) Nanotribological characterization of human hair and skin using atomic force microscopy. Ultramicroscopy 105:155–175

    Article  Google Scholar 

  7. Bhushan B, Chen N (2006) AFM studies of environmental effects on nanomechanical properties and cellular structure of human hair. Ultramicroscopy 106:755–764

    Article  Google Scholar 

  8. Chen Y–F (2011) Forensic applications of nanotechnology. J Chin Chem Soc 58:828–835

    Article  Google Scholar 

  9. Kasas S, Khanmy-Vital A, Dietler G (2001) Examination of line crossings by atomic force microscopy. Forensic Sci Int 119:290–298

    Article  Google Scholar 

  10. D’Uffizi M, Falso G, Ingo GM, Padeletti G (2002) Microchemical and micromorphological features of gunshot residue observed by combined use of AFM, SA-XPS, and SEM + EDS. Surf Interf Anal 34:502–506

    Article  Google Scholar 

  11. Mou Y, Lakadwar J, Rabalais JW (2008) Evaluation of shooting distance by AFM and FTIR/ATR analysis of GSR. J Forensic Sci 53:1381–1386

    Google Scholar 

  12. Sharma J, Teter JP, Abbundi RJ, Guardala NA (2003) Determination of radiation exposure history of common materials and computer hardware by using atomic (and magnetic force) microscopy. Appl Phys Lett 82:2236–2238

    Article  Google Scholar 

  13. Chen Y, Cai J (2006) Membrane deformation of unfixed erythrocytes in air with time lapse investigated by tapping mode atomic force microscopy. Micron 37:339–346

    Article  Google Scholar 

  14. Strasser S, Zink A, Kada G, Hinterdorfer P, Peschel O, Heckl WM, Nerlich AG, Thalhammer S (2007) Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Sci Int 170:8–14

    Article  Google Scholar 

  15. Wu Y, Hu Y, Cai J, Ma S, Wang X, Chen Y, Pan Y (2009) Time-dependent surface adhesive force and morphology of RBC measured by AFM. Micron 40:359–364

    Article  Google Scholar 

  16. Science and Technology Review, https://www.llnl.gov/str/Sep06/pdfs/09_06.2.pdf

  17. Watson GS, Watson JA (2007) Potential applications of scanning probe microscopy in forensic science. J Phys Conference Series 61:1251–1255

    Article  Google Scholar 

  18. Jones BJ, Downham R, Sears VG (2010) Effect of substrate surface topography on forensic development of latent fingerprints with iron oxide powder suspension. Surf Interf Anal 42:438–442

    Article  Google Scholar 

  19. Goddard AJ, Hillman AR, Bond JW (2010) High resolution imaging of latent fingerprints by localized corrosion on brass surfaces. J Forensic Sci 55:58–65

    Article  Google Scholar 

  20. Canetta E, Montiel K, Adya AK (2009) Morphological changes in textile fibers exposed to environmental stresses: atomic force microscopic examination. Forensic Sci Int 191:6–14

    Article  Google Scholar 

  21. Canetta E, Adya AK (2011) Atomic force microscopic investigation of commercial pressure sensitive adhesives for forensic analysis. Forensic Sci Int 210:16–25

    Article  Google Scholar 

  22. Taylor DE, Strawhecker KE, Shanholtz ER, Sorescu DC, Sausa RC (2014) Investigations of the intermolecular forces between RDX and polyethylene by force–distance spectroscopy and molecular dynamics simulations. J Phys Chem A 118:5083–5097

    Article  Google Scholar 

  23. Chaffee-Cipich MN, Sturtevant BD, Beaudoin SP (2013) Adhesion of explosives. Anal Chem 85:5358–5366

    Article  Google Scholar 

  24. Chen N, Bhushan B (2006) Atomic force microscopy studies of conditioner thickness distribution and binding interactions on the hair surface. J Microscopy 221:203–215

    Article  MathSciNet  Google Scholar 

  25. Zakon Y, Lemcoff NG, Marmur A, Zeiri Y (2012) Adhesion of standard explosive particles to model surfaces. J Phys Chem C 116:22815–22822

    Article  Google Scholar 

  26. Cook RF (2010) Mechanics of adhesion. In: Oyen ML (ed) Handbook of nanoindentation with biological applications. Pan Stanford Publishing, Singapore, pp 77–121

    Chapter  Google Scholar 

  27. Hutter JL, Bechhoefer J (1993) Calibration of atomic‐force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  Google Scholar 

  28. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc Roy Soc A 324:301–313

    Article  Google Scholar 

  29. Hertz H (1881) On the contact of elastic solids. J Reine Angew Math 92:156–171

    MATH  Google Scholar 

  30. Vlassak JJ, Nix WD (1993) Indentation modulus of elastically anisotropic half spaces. Phil Mag A 67:1045–1056

    Article  Google Scholar 

  31. DelRio FW, Steffens KL, Jaye C, Fischer DA, Cook RF (2009) Elastic, adhesive, and charge transport properties of a metal − molecule − metal junction: the role of molecular orientation, order, and coverage. Langmuir 26:1688–1699

    Article  Google Scholar 

  32. Staymates M, Fletcher R, Staymates J, Gillen G, Berkland C (2010) Production and characterization of polymer microspheres containing trace explosives using precision particle fabrication technology. J Microencapsulation 27:426–435

    Article  Google Scholar 

  33. Wei G, Bhushan B, Torgerson PM (2005) Nanomechanical characterization of human hair using nanoindentation and SEM. Ultramicroscopy 105:248–266

    Article  Google Scholar 

  34. Seshadri IP, Bhushan B (2008) In situ deformation characterization of human hair with atomic force microscopy. Acta Mater 56:774–781

    Article  Google Scholar 

  35. Lodge RA, Bhushan B (2006) Wetting properties of human hair by means of dynamic contact angle measurements. J Appl Polym Sci 102:5255–5265

    Article  Google Scholar 

  36. Bhushan B, Blackman GS (1991) Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology. J Tribol Trans ASME 113:452–457

    Article  Google Scholar 

  37. Forcada ML, Jakas MM, Grasmarti A (1991) On liquid film thickness measurements with the atomic force microscope. J Chem Phys 95:706–708

    Article  Google Scholar 

  38. Waeschle PA (1979) Examination of line crossings by scanning electron microscopy. J Forensic Sci 24:569–578

    Article  Google Scholar 

  39. Koons RD (1985) Sequencing of intersecting lines by combined lifting process and scanning electron microscopy. Forensic Sci Int 27:261–276

    Article  Google Scholar 

  40. Blueschke A, Lacis A (1996) Examination of line crossings by low KV scanning electron microscopy (SEM) using photographic stereoscopic pairs. J Forensic Sci 41:80–85

    Article  Google Scholar 

  41. Spagnolo GS (2006) Potentiality of 3D laser profilometry to determine the sequence of homogeneous crossing lines on questioned documents. Forensic Sci Int 164:102–109

    Article  Google Scholar 

  42. Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) A study of the mechanical, thermal, and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783–793

    Article  Google Scholar 

  43. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488

    Article  Google Scholar 

  44. Postek MT, Vladar A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005

    Article  Google Scholar 

  45. Wagner R, Moon R, Pratt J, Shaw G, Raman A (2011) Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 22:455703

    Article  Google Scholar 

  46. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties, and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  Google Scholar 

  47. Daluz HM (2015) Fundamentals of fingerprint analysis. CRC Press, Boca Raton

    Google Scholar 

  48. Girod A, Ramotowski R, Weyermann C (2012) Composition of fingermark residue: a qualitative and quantitative review. Forensic Sci Int 223:10–24

    Article  Google Scholar 

  49. Drapel V, Becue A, Champod C, Margot P (2009) Identification of promising antigenic component in latent fingermark residue. Forensic Sci Int 184:47–53

    Article  Google Scholar 

  50. Reinholz AD (2008) Albumin development method to visualize friction ridge detail on porous surface. J Forensic Ident 58:524–539

    Google Scholar 

  51. Croxton RS, Baron MG, Butler D, Kent T, Sears VG (2010) Variation in amino acids and lipid composition of latent fingerprints. Forensic Sci Int 199:93–102

    Article  Google Scholar 

  52. Weyermann C, Roux C, Champod C (2011) Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis. J Forensic Sci 56:102–108

    Article  Google Scholar 

  53. Mong GM, Petersen CE, Clauss TRW (1999) Advanced fingerprint analysis project fingerprint constituents. Pacific Northwest National Laboratory, Report# PNNL-13019

  54. Cuthbertson F (1969) The chemistry of fingerprints. United Kingdom Atomic Energy Authority, Report# AWRE 013/69

  55. Steinfeld JI, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 49:203–232

    Article  Google Scholar 

  56. Verkouteren JR, Coleman JL, Fletcher RA, Smith WJ, Klouda GA, Gillen G (2008) A method to determine collection efficiency of particles by swipe sampling. Meas Sci Technol 19:115101

    Article  Google Scholar 

  57. Bunsell AR (2009) Introduction to fibre tensile properties and failure. In: Bunsell AR (ed) Handbook of tensile properties of textile and technical fibres. Woodhead Publishing, Cambridge, pp 1–17

    Chapter  Google Scholar 

  58. Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58:2–13

    Article  Google Scholar 

  59. Israelachvili J (1991) Intermolecular and surface forces, 2nd edn. Academic, London

    Google Scholar 

  60. Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150:243–269

    Article  Google Scholar 

  61. Strengthening forensic science in the United States: A path forward: National Research Council (2009)

  62. National Institute of Justice, Forensic Sciences, http://nij.gov/topics/forensics/welcome.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. W. DelRio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DelRio, F.W., Cook, R.F. Quantitative Scanning Probe Microscopy for Nanomechanical Forensics. Exp Mech 57, 1045–1055 (2017). https://doi.org/10.1007/s11340-016-0238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0238-y

Keywords

Navigation