Skip to main content
Log in

TGF-β1 functional polymorphisms: a review

  • Review
  • Published:
European Cytokine Network Aims and scope

Abstract

Transforming Growth Factor β (TGF-β) is a multifunctional cytokine that plays a role in several biological processes. TGF-β1 is the most abundantly expressed isoform, associated with susceptibility to various diseases, and several polymorphisms have been described in the TGF-β1 gene structure, and some of them have been associated with functional implications. To date, eight single-nucleotide polymorphisms (SNPs) and one deletion/insertion polymorphism have been shown to affect TGF-β1 expression (rs2317130, rs11466313, rs1800468, rs1800469, rs11466314, rs1800471, rs1800470, and rs11466316); some of these interfere with transcriptional regulation by affecting the binding of transcription factors binding, while others interfere with protein production. These polymorphisms have been associated with different types of diseases (i.e., cancers, cardiac diseases, inflammatory diseases, and others) and could therefore be used as susceptibility biomarkers. Since polymorphism clusters are likely to be more reliable than single polymorphisms in this respect, it is hoped that haplotype analysis of TGF-β1 may reveal the genetic basis of disease susceptibility associated with the TGF-β1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-B)? Br J Plast Surg 2004; 57: 215–21.

    Article  PubMed  Google Scholar 

  2. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-beta-an excellent servant but a bad master. J Transl Med 2012; 10: 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dela Cruz C, Reis FM. The role of TGFβ superfamily members in the pathophysiology of endometriosis. Gynecol Endocrinol 2015; 31: 511–5.

    Article  CAS  Google Scholar 

  4. Kehrl JH, Wakefield LM, Roberts AB, et al. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 1986; 163: 1037–50.

    Article  CAS  PubMed  Google Scholar 

  5. Ge YZ, Wu R, Lu TZ, et al. Combined effects of TGF-β1 +869 T/C and +915 G/C polymorphisms on acute rejection risk in solid organ transplant recipients: a systematic review and meta-analysis. PLoS One 2014; 9: 1–9.

    Google Scholar 

  6. Massagué J, Gomis RR. The logic of TGFβ signaling. FEBS Lett 2006; 580: 2811–20.

    Article  PubMed  CAS  Google Scholar 

  7. ten Dijke P. Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends Biochem Sci 2000; 25: 64–70.

    Article  PubMed  Google Scholar 

  8. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002; 7: d793–807.

    Article  CAS  PubMed  Google Scholar 

  9. Hutchinson IV. The role of transforming growth factor-beta in transplant rejection. Transplant Proc 1999; 31: 9S–13S.

    Article  CAS  PubMed  Google Scholar 

  10. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–29.

    Article  CAS  PubMed  Google Scholar 

  11. Xiao YQ, Freire-de-Lima CG, Schiemann WP, Bratton DL, Vandivier RW, Henson PM. Transcriptional and translational regulation of TGF-beta production in response to apoptotic cells. J Immunol 2008; 181: 3575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gentry LE, Nash BW. The pro domain of pre-pro-transforming growth factor beta 1 when independently expressed is a functional binding protein for the mature growth factor. Biochemistry 1990; 29: 6851–7.

    Article  CAS  PubMed  Google Scholar 

  13. Poniatowski ŁA, Wojdasiewicz P, Gasik R, Szukiewicz D. Transforming growth factor beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm 2015; 2015: 137823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gentry LE, Lioubin MN, Purchio F, Marquardt H. Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. Mol Cell Biol 1988; 8: 4162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. ten Dijke P, Arthur HM. Extracellular control of TGF-beta signalling in vascular development and disease. Nat Rev Mol Cell Biol 2007; 8: 857–69.

    Article  PubMed  CAS  Google Scholar 

  16. Kusakabe M, Cheong PL, Nikfar R, McLennan IS, Koishi K. The structure of the TGF-βlatency associated peptide region determines the ability of the proprotein convertase furin to cleave TGF-βs. J Cell Biochem 2008; 103: 311–20.

    Article  CAS  PubMed  Google Scholar 

  17. Kanzaki T, Olofsson A, Morén A, et al. TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Cell 1990; 61: 1051–61.

    Article  CAS  PubMed  Google Scholar 

  18. Saharinen J, Taipale J, Keski-Oja J. Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J 1996; 15: 245–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Papageorgis P. TGF-β signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol 2015; 2015: 587193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999; 13: 2105–24.

    CAS  PubMed  Google Scholar 

  21. Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol 1988; 106: 1659–65.

    Article  CAS  PubMed  Google Scholar 

  22. Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA. Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 1994; 93: 892–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Derynck R, Rhee L, Chen EY, Van Tilburg A. Intron-exon structure of the human transforming growth factor-beta precursor gene. Mol Gen Genet 1987; 15: 3188–9.

    Google Scholar 

  24. Thys M, Schrauwen I, Vanderstraeten K, et al. The coding polymorphism T263I in TGF-B1 is associated with otosclerosis in two independent populations. Hum Mol Genet 2007; 16: 2021–30.

    Article  CAS  PubMed  Google Scholar 

  25. Cambien F, Ricard S, Troesch A, et al. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. Hypertension 1996; 28: 881–7.

    Article  CAS  PubMed  Google Scholar 

  26. Shah R, Rahaman B, Hurley CK, Posch PE. Allelic diversity in the TGF-β1 regulatory region: characterization of novel functional single nucleotide polymorphisms. Hum Genet 2006; 119: 61–74.

    Article  CAS  PubMed  Google Scholar 

  27. Kim SJ, Glick A, Sporn MB, Roberts AB. Characterization of the promoter region of the human transforming growth factor-beta 1 gene. J Biol Chem 1989; 264: 402–8.

    CAS  PubMed  Google Scholar 

  28. Dhaouadi N, Li JY, Feugier P, et al. Computational identification of potential transcriptional regulators of TGF-B1 in human atherosclerotic arteries. Genomics 2014; 103: 357–70.

    Article  CAS  PubMed  Google Scholar 

  29. Baugé C, Cauvard O, Leclercq S, Galéra P, Boumédiene K. Modulation of transforming growth factor beta signalling pathway genes by transforming growth factor beta in human osteoarthritic chondrocytes: involvement of Sp1 in both early and late response cells to transforming growth factor beta. Arthritis Res Ther 2011; 13: R23.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Birchenall-Roberts MC, Ruscetti FW, Kasper J, et al. Transcriptional regulation of the transforming growth factor b1 promotor by v-src gene products is mediated through the AP-1 complex. Mol Cell Biol 1990; 10: 4978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buck A, Ellenrieder V. Recent advances in TGFβ-regulated transcription during carcinogenesis. Signal Transduct 2006; 6: 345–54.

    Article  CAS  Google Scholar 

  32. Ogata H, Chinen T, Yoshida T, et al. Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production. Oncogene 2006; 25: 2520–30.

    Article  CAS  PubMed  Google Scholar 

  33. Kim SJ, Yoo YDO, Chiou C, Choi KS, Yi Y. The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor beta1 gene through an Egr-1 binding site. J Virol 1996;70:7062–70.

    PubMed  PubMed Central  Google Scholar 

  34. Weigert C, Sauer U, Brodbeck K, Pfeiffer A, Häring HU, Schleicher E. AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. J Am Soc Nephrol 2000; 11: 2007–16.

    CAS  PubMed  Google Scholar 

  35. Presser LD, McRae S, Waris G. Activation of TGF-B1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-B1 in hepatic stellate cell activation and invasion. PLoS One 2013; 8: e56367.

    Article  CAS  Google Scholar 

  36. Dey BR, Sukhatme VP, Roberts AB, et al. Repression of the transforming growth factor-beta 1 gene by theWilms’ tumor suppressor WT1 gene product. Mol Endocrinol 1994; 8: 595–602.

    CAS  PubMed  Google Scholar 

  37. Karki R, Pandya D, Elston RC, Ferlini C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genomics 2015; 8: 37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Brookes AJ. The essence of SNPs. Gene 1999; 234: 177–86.

    Article  CAS  PubMed  Google Scholar 

  39. Aerts J, Wetzels Y, Cohen N, Aerssens J. Data mining of public SNP databases for the selection of intragenic SNPs. Hum Mutat 2002; 20: 162–73.

    Article  CAS  PubMed  Google Scholar 

  40. Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol 2009; 578: 3–22.

    Article  CAS  PubMed  Google Scholar 

  41. Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 1999; 8: 93–7.

    Article  CAS  PubMed  Google Scholar 

  42. Syrris P, Carter ND, Metcalfe JC, et al. Transforming growth factorbeta1 gene polymorphisms and coronary artery disease. Clin Sci 1998; 95: 659–67.

    Article  CAS  PubMed  Google Scholar 

  43. Jin Q, Hemminki K, Grzybowska E, et al. Polymorphisms and haplotype structures in genes for transforming growth factor B1 and its receptors in familial and unselected breast cancers. Int J Cancer 2004; 112: 94–9.

    Article  CAS  PubMed  Google Scholar 

  44. Shah R, Hurley CK, Posch PE. A molecular mechanism for the differential regulation of TGF-B1 expression due to the common SNP-509C-T (c-1347C > T). Hum Genet 2006; 120: 461–9.

    Article  CAS  PubMed  Google Scholar 

  45. Guo W, Dong Z, Guo Y, et al. Polymorphisms of transforming growth factor-β1 associated with increased risk of gastric cardia adenocarcinoma in north China. PLoS One 2014; 9: e112912.

    Article  CAS  Google Scholar 

  46. Cao H, Zhou Q, Lan R, et al. A functional polymorphism C-509T in TGF-β-1 promoter contributes to susceptibility and prognosis of lone atrial fibrillation in chinese population. Int J Immunogenet 2011; 38: 215–24.

    Article  CAS  Google Scholar 

  47. Luedecking EK, DeKosky ST, Mehdi H, Ganguli M, Kamboh MI. Analysis of genetic polymorphisms in the transforming growth factor-beta1 gene and the risk of Alzheimer’s disease. Hum Genet 2000; 106: 565–9.

    Article  CAS  PubMed  Google Scholar 

  48. Silverman ES, Palmer LJ, Subramaniam V, et al. Transforming growth factor-β1 promoter polymorphism C-509T is associated with asthma. Am J Respir Crit Care Med 2004; 169: 214–9.

    Article  PubMed  Google Scholar 

  49. Randall LL, Hardy SJ. Unity in function in the absence of consensus in sequence: role of leader peptides in export. Science 1989; 243: 1156–9.

    Article  CAS  PubMed  Google Scholar 

  50. Dunning AM, Ellis PD, McBride S, et al. A transforming growth factor beta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 2003; 63: 2610–5.

    CAS  PubMed  Google Scholar 

  51. Pooja S, Francis A, Rajender S, et al. Strong impact of TGF-β1 gene polymorphisms on breast cancer risk in Indianwomen: a casecontrol and population-based study. PLoS One 2013; 8: e75979.

    Article  CAS  Google Scholar 

  52. Taubenschuss E, Marton E, Mogg M, et al. The L10P polymorphism and serum levels of transforming growth factor beta1 in human breast cancer. Int J Mol Sci 2013; 14: 15376–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yokota M, Ichihara S, Lin T-L, Nakashima N, Yamada Y. Association of a T29>C polymorphism of the transforming growth factor-B1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 2000; 101: 2783–7.

    Article  CAS  PubMed  Google Scholar 

  54. Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV. Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factorbeta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 1998; 66: 1014–20.

    Article  CAS  PubMed  Google Scholar 

  55. Nel M, Buys J-M, Rautenbach R, Mowla S, Prince S, Heckmann JM. The African−387 C>T TGF-β1 variant is functional and associates with the ophthalmoplegic complication in juvenile myasthenia gravis. J Hum Genet 2016; 61: 307–16.

    Article  CAS  PubMed  Google Scholar 

  56. Janssens K, Gershoni-Baruch R, Gua˜nabens N, et al. Mutations in the gene encoding the latency-associated peptide of TGF-β1 cause Camurati-Engelmann disease. Nature 2000; 417: 708.

    Google Scholar 

  57. Park BL, Han IK, Lee HS, Kim LH, Kim SJ, Shin HD. Identification of novel variants in transforming growth factor-beta 1 (TGF-β1) gene and association analysis with bone mineral density. Hum Mutat 2003; 22: 257–8.

    Article  Google Scholar 

  58. Healy J, Dionne J, Belanger H, et al. Functional impact of sequence variation in the promoter region of TGF-β1. Int J Cancer 2009; 125: 1483–9.

    Article  CAS  PubMed  Google Scholar 

  59. Knight JC, Keating BJ, Kwiatkowski DP. Allele-specific repression of lymphotoxin-α by activated B cell factor-1. Nature Genetics 2004;36:394–9.

    Article  CAS  PubMed  Google Scholar 

  60. Crawford DC, Nickerson DA. Definition and clinical importance of haplotypes. Annu Rev Med 2005; 56: 303–20.

    Article  CAS  PubMed  Google Scholar 

  61. Ramos-Flores C, Romero-Gutierrez T, Delgado-Enciso I, et al. Polymorphisms in the genes related to angiogenesis are associated with uterine cervical cancer. Int J Gynecol Cancer 2013; 23: 1198–204.

    Article  PubMed  Google Scholar 

  62. Xu J, Yu X, Huang C, et al. Association of 5Well-Defined Polymorphisms in the Gene Encoding Transforming Growth Factor-1With Coronary Artery Disease Among Chinese PatientsWith Hypertension. Angiology 2014; 66: 1–7.

    Article  Google Scholar 

  63. Liu Y, Lin X-F, Lin C-J, Jin S-S, Wu J-M. Transforming growth factor beta-1 C-509T polymorphism and cancer risk: a meta-analysis of 55 case-control studies. Asian Pac J Cancer Prev 2012; 13: 4683–8.

    Article  PubMed  Google Scholar 

  64. Slattery ML, Herrick JS, Lundgreen A, Wolff RK. Genetic variation in the TGF-β signaling pathway and colon and rectal cancer risk. Cancer Epidemiol Biomarkers Prev 2011; 20: 57–69.

    Article  CAS  PubMed  Google Scholar 

  65. Jin G, Deng Y, Miao R, et al. TGF-β1 and TGF-β2 functional polymorphisms and risk of esophageal squamous cell carcinoma: a case-control analysis in a Chinese population. J Cancer Res Clin Oncol 2008; 134: 345–51.

    Article  CAS  PubMed  Google Scholar 

  66. Wei YS, Xu QQ, Wang CF, Pan Y, Liang F, Long XK. Genetic variation in transforming growth factor-beta1 gene associated with increased risk of esophageal squamous cell carcinoma. Tissue Antigens 2007; 70: 464–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wei Y-S, Zhu Y-H, Du B, et al. Association of transforming growth factor-beta1 gene polymorphisms with genetic susceptibility to nasopharyngeal carcinoma. Clin Chim Acta 2007; 380: 165–9.

    Article  CAS  PubMed  Google Scholar 

  68. Hu S, Zhou G, Zhang L, Jiang H, Xiao M. The effects of functional polymorphisms in the TGFβ1 gene on nasopharyngeal carcinoma susceptibility. Otolaryngol Head Neck Surg 2012; 146: 579–84.

    Article  PubMed  Google Scholar 

  69. Ewart-Toland A, Chan JM, Yuan J, Balmain A, Ma J. A gain of function TGF-β1 polymorphism may be associated with late stage prostate cancer. Cancer Epidemiol Biomarkers Prev 2004; 13: 759–64.

    CAS  PubMed  Google Scholar 

  70. Chang W, Zhang L, Su H, Yao Y. An updated meta-analysis of transforming growth factor-β1 gene: three polymorphisms with gastric cancer. Tumour Biol 2014; 35: 2837–44.

    Article  CAS  PubMed  Google Scholar 

  71. Jin G, Wang L, Chen W, et al. Variant alleles of TGF-β1 and TGF-β2 are associated with a decreased risk of gastric cancer in a Chinese population. Int J Cancer 2007; 120: 1330–5.

    Article  CAS  PubMed  Google Scholar 

  72. Xu L, Zeng Z, Chen B, et al. Association between the TGF-β1-509C/T and TGF-βR2-875A/G polymorphisms and gastric cancer: a case-control study. Oncol Lett 2011; 2: 371–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh H, Jain M, Mittal B. Role of TGF-beta1 (-509C>T) promoter polymorphism in susceptibility to cervical cancer. Oncol Res 2009; 18: 41–5.

    Article  CAS  PubMed  Google Scholar 

  74. Torres-Poveda K, Burguete-García AI, Bahena-Román M, et al. Risk allelic load in Th2 and Th3 cytokines genes as biomarker of susceptibility to HPV-16 positive cervical cancer: a case control study. BMC Cancer 2016; 16: 330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu Y, Boer JMA, Barsova RM, et al. TGF-β1 genetic polymorphisms and coronary heart disease risk: a meta-analysis. BMC Med Genet 2012; 13: 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morris DR, Moxon JV, Biros E, Krishna SM, Golledge J. Metaanalysis of the association between transforming growth factor-beta polymorphisms and complications of coronary heart disease. PLoS One 2012; 7: e37878.

    Article  CAS  Google Scholar 

  77. Langdahl BL, Uitterlinden AG, Ralston SH, et al. Large-scale analysis of association between polymorphisms in the transforming growth factor beta 1 gene (TGF-β1) and osteoporosis: the GENOMOS study. Bone 2008; 42: 969–81.

    Article  CAS  PubMed  Google Scholar 

  78. Sie MPS, Uitterlinden AG, Bos MJ, et al. TGF-β1 polymorphisms and risk of myocardial infarction and stroke: the Rotterdam study. Stroke 2006; 37: 2667–71.

    Article  CAS  PubMed  Google Scholar 

  79. Cui L, Sun Y, Li D, Wang S, Shao D. Transforming growth factor-β1 rs1800469 polymorphism and periodontitis risk: a meta-analysis. Int J Clin Exp Med 2015; 8: 15569–74.

    PubMed  PubMed Central  Google Scholar 

  80. Celedón JC, Lange C, Raby B, et al. The transforming growth factor-beta1 (TGF-β1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet 2004; 13: 1649–56.

    Article  PubMed  CAS  Google Scholar 

  81. Wang HB, Song WG, Liu HQ, Fang F, Xiao Y. Role of TGF-β1 polymorphism in the development of metastatic brain tumors in non-small cell lung cancer patients. Genet Mol Res 2015; 14: 1–2.

    Article  PubMed  CAS  Google Scholar 

  82. Vuong MT, Lundberg S, Gunnarsson I, et al. Genetic variation in the transforming growth factor-1 gene is associated with susceptibility to IgA nephropathy. Nephrol Dial Transplant 2009; 24: 3061–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Barsova RM, Titov BV, Matveeva NA, et al. Contribution of the TGF-β1 Gene to Myocardial Infarction Susceptibility. Acta Naturae 2012; 4: 74–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Heidari Z, Mahmoudzadeh Sagheb H, Sheibak N. Association between TGF-Beta1 (-509) C/T gene polymorphism and tissue degradation level in chronic periodontitis: a stereological study. Gene Cell Tissue 2015; 2: 1–7.

    Google Scholar 

  85. Zhang L, Mao L, Xu J. Transforming growth factor-β1 polymorphisms and graft-versus-host disease risk: a meta-analysis. Oncotarget 2015; 7: 2455–61.

    PubMed Central  Google Scholar 

  86. Tao H, Chen G, Cheng G, Shan X. The haplotype of the TGFβ1 gene associated with cerebral infarction in Chinese. Can J Neurol Sci 2012; 39: 626–31.

    Article  PubMed  Google Scholar 

  87. Peng Z, Zhan L, Chen S, Xu E. Association of transforming growth factor-β1 gene C-509T and T869C polymorphisms with atherosclerotic cerebral infarction in the Chinese: a case-control study. Lipids Health Dis 2011; 10: 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li X, Zong Q, Han F. Associations between transforming growth factor-β1 gene-509C/T and + 915G/C polymorphisms and pneumoconiosis: a meta-analysis. Int J Clin Exp Med 2016; 9: 5764–72.

    Google Scholar 

  89. Jonth AC, Silveira L, Fingerlin TE, et al. TGF-1 variants in chronic beryllium disease and sarcoidosis. J Immunol 2007; 179: 4255–62.

    Article  CAS  PubMed  Google Scholar 

  90. Carneiro NK, Oda JMM, Losi Guembarovski R, et al. Possible association between TGF-β1 polymorphism and oral cancer. Int J Immunogenet 2013; 40: 292–8.

    Article  CAS  PubMed  Google Scholar 

  91. Shin A, Shu X-O, Cai Q, Gao Y-T, Zheng W. Genetic polymorphisms of the transforming growth factor-beta1 gene and breast cancer risk: a possible dual role at different cancer stages. Cancer Epidemiol Biomarkers Prev 2005; 14: 1567–70.

    Article  CAS  PubMed  Google Scholar 

  92. Ziv E, Cauley J, Morin PA, Saiz R, Browner WS. Association between the T29>C polymorphism in the transforming growth factor beta1 gene and breast cancer among elderly white women: the Study of Osteoporotic Fractures. JAMA 2001; 285: 2859–63.

    Article  CAS  PubMed  Google Scholar 

  93. Guan X, Sturgis EM, Lei D, et al. Association of TGF-beta1 genetic variants with HPV16-positive oropharyngeal cancer. Clin Cancer Res 2010; 16: 1416–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li Z, Habuchi T, Tsuchiya N, et al. Increased risk of prostate cancer and benign prostatic hyperplasia associated with transforming growth factor-beta 1 gene polymorphism at codon10. Carcinogenesis 2004; 25: 237–40.

    Article  CAS  PubMed  Google Scholar 

  95. Fan H, Yu H, Deng H, Chen X. Transforming growth factor-β1 rs1800470 polymorphism is associated with lung cancer risk: a meta-analysis. Med Sci Monit 2014; 20: 2358–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sandhya A, Bindu CH, Reddy KP, Vishnupriya S. TGF-β1 codon 10 polymorphism and its association with the development of myopia: a case-control study. Biol Med 2011; 3: 18–24.

    CAS  Google Scholar 

  97. Magdoud K, Granados Herbepin V, Messaoudi S, et al. Genetic variation in TGF-β1 gene and risk of idiopathic recurrent pregnancy loss. Mol Hum Reprod 2013; 19: 438–43.

    Article  CAS  PubMed  Google Scholar 

  98. Nabrdalik K, Gumprecht J, Adamczyk P, Górczy´nska-Kosiorz S, Zywiec J, Grzeszczak W. Association of rs1800471 polymorphism of TGF-β1 gene with chronic kidney disease occurrence and progression and hypertension appearance. Arch Med Sci 2013; 9: 230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yuan X, Liao Z, Liu Z, et al. Single nucleotide polymorphism at rs1982073:T869C of the TGF-β1 gene is associated with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. J Clin Oncol 2009; 27: 3370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sánchez-Parada MG, Alvarez-Rodríguez BA, Gómez-Meda BC, et al. Association of genetic polymorphisms with histological grading of necroinflammation, staging of fibrosis, and liver function in Mexicans with chronic hepatitis C virus infection. J Investig Med 2013; 61: 1088–96.

    Article  PubMed  Google Scholar 

  101. Rashidi-Nezhad A, Azimi C, Alimoghaddam K, et al. TGF-Beta codon 25 polymorphism and the risk of graft-versus-host disease after allogenic hematopoietic stem cell transplantation. Iran J Allergy Asthma Immunol 2010; 9: 1–6.

    PubMed  Google Scholar 

  102. Sommen M, Van Camp G, Liktor B, et al. Genetic association analysis in a clinically and histologically confirmed otosclerosis population confirms association with the TGF-β1 gene but suggests an association of the RELN gene with a clinically indistinguishable otosclerosis-like phenotype. Otol Neurotol 2014; 35: 1058–64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Brajão de Oliveira.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cebinelli, G.C.M., Trugilo, K.P., Garcia, S.B. et al. TGF-β1 functional polymorphisms: a review. Eur Cytokine Netw 27, 81–89 (2016). https://doi.org/10.1684/ecn.2016.0382

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2016.0382

Key words

Navigation