Skip to main content
Log in

Cellular enrichment through microfluidic fractionation based on cell biomechanical properties

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The biomechanical properties of populations of diseased cells are shown to have differences from healthy populations of cells, yet the overlap of these biomechanical properties can limit their use in disease cell enrichment and detection. We report a new microfluidic cell enrichment technology that continuously fractionates cells through differences in biomechanical properties, resulting in highly pure cellular subpopulations. Cell fractionation is achieved in a microfluidic channel with an array of diagonal ridges that are designed to segregate biomechanically distinct cells to different locations in the channel. Due to the imposition of elastic and viscous forces during cellular compression, which are a function of cell biomechanical properties including size and viscoelasticity, larger, stiffer and less viscous cells migrate parallel to the diagonal ridges and exhibit positive lateral displacement. On the other hand, smaller, softer and more viscous cells migrate perpendicular to the diagonal ridges due to circulatory flow induced by the ridges and result in negative lateral displacement. Multiple outlets are then utilized to collect cells with finer gradation of differences in cell biomechanical properties. The result is that cell fractionation dramatically improves cell separation efficiency compared to binary outputs and enables the measurement of subtle biomechanical differences within a single cell type. As a proof-of-concept demonstration, we mix two different leukemia cell lines (K562 and HL60) and utilize cell fractionation to achieve over 45-fold enhancement of cell populations, with high-purity cellular enrichment (90–99 %) of each cell line. In addition, we demonstrate cell fractionation of a single cell type (K562 cells) into subpopulations and characterize the variations of biomechanical properties of the separated cells with atomic force microscopy. These results will be beneficial to obtaining label-free separation of cellular mixtures or to better investigate the origins of biomechanical differences in a single cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bongiorno T et al (2014) Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation. J Biomech 47:2197–2204. doi:10.1016/j.jbiomech.2013.11.017

    Article  Google Scholar 

  • Bow H et al (2011) A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–1073. doi:10.1039/c0lc00472c

    Article  Google Scholar 

  • Brown MJ, Hallam JA, Colucci-Guyon E, Shaw S (2001) Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J Immunol 166:6640–6646

    Article  Google Scholar 

  • Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12:1753–1767. doi:10.1039/c2lc21273k

    Article  Google Scholar 

  • Cho SH, Chen CH, Tsai FS, Godin JM, Lo YH (2010) Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (mu FACS). Lab Chip 10:1567–1573. doi:10.1039/c000136h

    Article  Google Scholar 

  • Choi S, Song S, Choi C, Park JK (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–1538. doi:10.1039/b705203k

    Article  Google Scholar 

  • Choi SY, Karp JM, Karnik R (2012) Cell sorting by deterministic cell rolling. Lab Chip 12:1427–1430. doi:10.1039/c2lc21225k

    Article  Google Scholar 

  • Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783. doi:10.1038/nnano.2007.388

    Article  Google Scholar 

  • Dahl KN, Ribeiro AJS, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1318. doi:10.1161/circresaha.108.173989

    Article  Google Scholar 

  • Darling EM, Zauscher S, Block JA, Guilak F (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92:1784–1791. doi:10.1529/biophysj.106.083097

    Article  Google Scholar 

  • Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10:789–794. doi:10.1039/b915522h

    Article  Google Scholar 

  • Glenister FK, Coppel RL, Cowman AF, Mohandas N, Cooke BM (2002) Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 99:1060–1063. doi:10.1182/blood.V99.3.1060

    Article  Google Scholar 

  • Gossett DR et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci USA 109:7630–7635. doi:10.1073/pnas.1200107109

    Article  Google Scholar 

  • Guck J et al (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698. doi:10.1529/biophysj.104.045476

    Article  Google Scholar 

  • Hou HW, Bhagat AAS, Chong AGL, Mao P, Tan KSW, Han JY, Lim CT (2010) Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613. doi:10.1039/c003873c

    Article  Google Scholar 

  • Hur SC, Henderson-MacLennan NK, McCabe ERB, Di Carlo D (2011) Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912–920. doi:10.1039/c0lc00595a

    Article  Google Scholar 

  • Kim U, Soh HT (2009) Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic-magnetic activated cell sorter. Lab Chip 9:2313–2318. doi:10.1039/b903950c

    Article  Google Scholar 

  • Mao WB, Alexeev A (2011) Hydrodynamic sorting of microparticles by size in ridged microchannels. Phys Fluids 23. doi:10.1063/1.3590264

  • Otto O et al (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12:199–202. doi:10.1038/nmeth.3281

    Article  Google Scholar 

  • Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980. doi:10.1039/b604542a

    Article  Google Scholar 

  • Sawetzki T, Eggleton CD, Desai SA, Marr DWM (2013) Viscoelasticity as a biomarker for high-throughput flow cytometry. Biophys J 105:2281–2288. doi:10.1016/j.bpj.2013.10.003

    Article  Google Scholar 

  • Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6:83–89. doi:10.1039/b512049g

    Article  Google Scholar 

  • Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438. doi:10.1016/j.actbio.2007.04.002

    Article  MathSciNet  Google Scholar 

  • Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80:3135–3143. doi:10.1021/ac7020568

    Article  Google Scholar 

  • Vona G et al (2000) Isolation by size of epithelial tumor cells—a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156:57–63. doi:10.1016/s0002-9440(10)64706-2

    Article  Google Scholar 

  • Wagner B, Tharmann R, Haase I, Fischer M, Bausch AR (2006) Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties. Proc Natl Acad Sci USA 103:13974–13978. doi:10.1073/pnas.0510190103

    Article  Google Scholar 

  • Wang G, Mao WB, Byler R, Patel K, Henegar C, Alexeev A, Sulchek T (2013) Stiffness dependent separation of cells in a microfluidic device. PLoS One 8. doi:10.1371/journal.pone.0075901

  • Wang G, Crawford K, Turbyfield C, Lam W, Alexeev A, Sulchek T (2015) Microfluidic cellular enrichment and separation through differences in viscoelastic deformation. Lab Chip 15:532–540. doi:10.1039/c4lc01150c

    Article  Google Scholar 

  • Wen J, Arakawa T, Philo JS (1996) Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions. Anal Biochem 240:155–166. doi:10.1006/abio.1996.0345

    Article  Google Scholar 

  • Wolff A et al (2003) Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip 3:22–27. doi:10.1039/b209333b

    Article  Google Scholar 

  • Xu WW, Mezencev R, Kim B, Wang LJ, McDonald J, Sulchek T (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7. doi:10.1371/journal.pone.0046609

  • Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239. doi:10.1039/b509386d

    Article  Google Scholar 

  • Zhang WJ et al (2012) Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells. Proc Natl Acad Sci USA 109:18707–18712. doi:10.1073/pnas.1209893109

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF project number CBET-0932510, TI:GER program at Scheller College of Business at Georgia Tech, the Regenerative Engineering and Medicine Seed Grant, and the President’s Undergraduate Research Award (PURA) program at Georgia Tech. The authors would like to thank Dr. Wilbur Lam, Dr. Wenbin Mao, Dr. Hang Lu and Dr. Peter Hesketh for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Sulchek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Turbyfield, C., Crawford, K. et al. Cellular enrichment through microfluidic fractionation based on cell biomechanical properties. Microfluid Nanofluid 19, 987–993 (2015). https://doi.org/10.1007/s10404-015-1608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1608-y

Keywords

Navigation