Skip to main content
Log in

Habituation of LG-mediated tailflip in the crayfish

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Crayfish escape from threatening stimuli by tailflipping. If a stimulus is applied to the rear, crayfish escape up and forwards in a summersault maneuver that is mediated by the activation of lateral giant (LG) interneurons. The occurrence probability of LG-mediated tailflip, however, diminishes and habituates if a stimulus is repeatedly applied. Since crayfish have a relatively simple CNS with many identifiable neurons, crayfish represent a good animal to analyze the cellular basis of habituation. A reduction in the amplitude of the EPSP in the LGs, caused by direct chemical synaptic connection from sensory afferents by repetitive stimulations, is essential to bring about an inactivation of the LGs. The spike response of the LGs recovers within several minutes of habituation, but the LGs subsequently fail to spike when an additional stimulus is applied after specific periods following habituation. These results indicate that a decline in synaptic efficacy from the mechanosensory afferents recovers readily after a short delay, but then the excitability of the LGs themselves decreases. Furthermore, the processes underlying habituation are modulated depending on a social status. When two crayfish encounter each other, a winner–loser relationship is established. With a short interstimulus interval of 5 s, the rate of habituation of the LG in both socially dominant and subordinate crayfish becomes lower than in socially isolated animals. Serotonin and octopamine affect this social status-dependent modulation of habituation by means of activation of downstream second messenger system of cAMP and IP3 cascades, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antonsen BL, Edwards DH (2007) Mechanisms of serotonergic facilitation of a command neuron. J Neurophysiol 98:3494–3504

    Article  PubMed  Google Scholar 

  • Aonuma H, Nagayama T (1999) GABAergic and non-GABAergic spiking interneurons of local and intersegmental groups in the crayfish terminal abdominal ganglion. J Comp Neurol 410:677–688

    Article  CAS  PubMed  Google Scholar 

  • Araki M, Nagayama T (2003) Direct chemically mediated synaptic transmission from mechanosensory afferents contributes to habituation of crayfish lateral giant escape reaction. J Comp Physiol A 189:731–739

    Article  CAS  Google Scholar 

  • Araki M, Nagayama T (2005) Decrease in excitability of LG following habituation of the crayfish escape reaction. J Comp Physiol A 191:481–489

    Article  Google Scholar 

  • Araki M, Nagayama T (2012) IP3 mediated octopamine-induced synaptic enhancement of crayfish LG neurone. J Comp Physiol A 198:607–615

    Article  CAS  Google Scholar 

  • Araki M, Nagayama T, Sprayberry J (2005) Cyclic AMP mediates serotonin-induced synaptic enhancement of lateral giant interneuron of the crayfish. J Neurophysiol 94:2644–2652

    Article  CAS  PubMed  Google Scholar 

  • Araki M, Hasegawa T, Komatsuda S, Nagayama T (2013) Social status-dependent modulation of LG-flip habituation in the crayfish. J Exp Biol 216:681–686

    Article  PubMed  Google Scholar 

  • Braun G, Bicker G (1992) Habituation of an appetitive reflex in the honeybee. J Neurophysiol 67:588–598

    CAS  PubMed  Google Scholar 

  • Bryan JS, Krasne FB (1977) Protection from habituation of the crayfish lateral giant fibre escape response. J Physiol 271:351–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eaton RC, Lavender WA, Wieland CM (1981) Identification of Mauthner-initiated response patterns in goldfish: evidence from simultaneous cinematography and electrophysiology. J Comp Physiol A 144:521–531

    Article  Google Scholar 

  • Edwards DH (2009) Excitation and habituation of crayfish escape. 1969. J Exp Biol 212:749–751

    Article  PubMed  Google Scholar 

  • Edwards DH, Fricke RA, Barnett LD, Yeh SR, Leise EM (1994) The onset of response habituation during the growth of the lateral giant neuron of crayfish. J Neurophysiol 72:890–898

    CAS  PubMed  Google Scholar 

  • Edwards DH, Heitler WJ, Krasne FB (1999) Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. Trends Neurosci 22:153–161

    Article  CAS  PubMed  Google Scholar 

  • Edwards DH, Yeh SR, Musolf BE, Antonsen BL, Krasne FB (2002) Metamodulation of the crayfish escape circuit. Brain Behav Evol 60:360–369

    Article  PubMed  Google Scholar 

  • Fricke RA (1984) Development of habituation in the crayfish due to selective weakening of electrical synapses. Brain Res 322:139–143

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto S, Hirata B, Nagayama T (2011) Dominance hierarchy-dependent behavioural plasticity of crayfish avoidance reactions. J Exp Biol 214:2718–2723

    Article  PubMed  Google Scholar 

  • Gerhardt CC, Bakker RA, Piek GJ, Planta RJ, Vreugdenhil E, Leysen JE, van Heerikhuizen H (1997) Molecular cloning and pharmacological characterization of a molluscan octopamine receptor. Mol Pharmac 51:293–300

    CAS  Google Scholar 

  • Glanzman DL, Krasne FB (1983) Serotonin and octopamine have opposite modulatory effects on the crayfish’s lateral giant escape reaction. J Neurosci 11:2263–2269

    Google Scholar 

  • Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5:146–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herberholz J, Issa FA, Edwards DH (2001) Patterns of neural circuit activation and behavior during dominance hierarchy formation in freely behaving crayfish. J Neurosci 21:2759–2767

    CAS  PubMed  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PPA (1994) International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmachol Rev 46:157–203

    CAS  Google Scholar 

  • Huber R, Delago A (1998) Serotonin alters decisions to withdraw in fighting crayfish, Astacus astacus: the motivational concept revisited. J Comp Physiol A 182:573–583

    Article  Google Scholar 

  • Huber R, Smith K, Delago A, Isaksson K, Kravitz EA (1997) Serotonin and aggressive motivation in crustaceans: altering the decision to retreat. Proc Natl Acad Sci USA 94:5939–5942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER (2009) The biology of memory storage: a forty-year perspective. J Neurosci 29:12748–12756

    Article  CAS  PubMed  Google Scholar 

  • Kennedy D, Takeda K (1965) Reflex control of abdominal flexor muscles in the crayfish, I. The twitch system. J Exp Biol 43:211–227

    Google Scholar 

  • Krasne FB (1969) Excitation and habituation of the crayfish escape reflex: the depolarizing response in lateral giant fibers of the isolated abdomen. J Exp Biol 50:29–46

    CAS  PubMed  Google Scholar 

  • Krasne FB, Bryan JS (1973) Habituation: regulation through presynaptic inhibition. Science 182:590–592

    Article  CAS  PubMed  Google Scholar 

  • Krasne FB, Edwards DH (2002) Modulation of the crayfish escape reflex–physiology and neuroethology. Integr Comp Biol 42:705–715

    Article  PubMed  Google Scholar 

  • Krasne FB, Teshiba TM (1995) Habituation of an invertebrate escape reflex due to modulation by higher centers rather than local events. Proc Natl Acad Sci USA 92:3362–3366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krasne FB, Wine JJ (1975) Extrinsic modulation of crayfish escape behaviour. J Exp Biol 63:433–450

    CAS  PubMed  Google Scholar 

  • Krasne FB, Woodsmall KS (1969) Waning of the crayfish escape response as a result of repeated stimulation. Anim Behav 17:416–424

    Article  CAS  PubMed  Google Scholar 

  • Krasne FB, Shamsian A, Kulkarni R (1997) Altered excitability of the crayfish lateral giant escape reflex during agonistic encounters. J Neurosci 17:709–716

    CAS  PubMed  Google Scholar 

  • Lee SH, Taylor K, Krasne FB (2008) Reciprocal stimulation of decay between serotonergic facilitation and depression of synaptic transmission. J Neurophysiol 100:1113–1126

    Article  PubMed Central  PubMed  Google Scholar 

  • Marchand AR, Barnes WJ (1992) Correlates of habituation of a polysynaptic reflex in crayfish in vivo and in vitro. Eur J Neurosci 4:521–532

    Article  PubMed  Google Scholar 

  • Miller MW, Vu ET, Krasne FB (1992) Cholinergic transmission at the first synapse of the circuit mediating the crayfish lateral giant escape reaction. J Neurophysiol 68:2174–2184

    CAS  PubMed  Google Scholar 

  • Miyata H, Nagayama T, Takahata M (1997) Two types of identified ascending interneurons with distinct GABA receptors in the crayfish terminal abdominal ganglion. J Neurophysiol 77:1213–1223

    CAS  PubMed  Google Scholar 

  • Momohara Y, Kanai A, Nagayama T (2013) Aminergic control of social status in crayfish agonistic encounters. PLoS ONE 8:e74489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagayama T (2005) GABAergic and glutamatergic inhibition of nonspiking local interneurons in the terminal abdominal ganglion of the crayfish. J Exp Zool 303A:66–75

    Article  CAS  Google Scholar 

  • Nagayama T (2008) Crustacean escape behaviour. In: Shimozawa T, Hariyama T (eds) Insect mimetics. NTS (in Japanese), Tokyo, pp 533–541

  • Nagayama T, Newland PL (2011) Temperature dependent plasticity of habituation in the crayfish. J Comp Physiol A 197:1073–1081

    Article  CAS  Google Scholar 

  • Nagayama T, Takahata M, Hisada M (1986) Behavioral transition of crayfish avoidance reaction in response to uropod stimulation. Exp Biol 46:75–82

    CAS  PubMed  Google Scholar 

  • Nagayama T, Isogai Y, Sato M, Hisada M (1993a) Intersegmental ascending interneurones controlling uropod movements of the crayfish Procambarus clarkii. J Comp Neurol 332:155–174

    Article  CAS  PubMed  Google Scholar 

  • Nagayama T, Isogai Y, Namba H (1993b) Physiology and morphology of spiking local interneurones in the terminal abdominal ganglion of the crayfish. J Comp Neurol 337:584–599

    Article  CAS  PubMed  Google Scholar 

  • Nagayama T, Namba H, Aonuma H (1994) Morphological and physiological bases of crayfish local circuit neurones. Histol Histopath 9:791–805

    CAS  Google Scholar 

  • Nagayama T, Namba H, Aonuma H (1997a) Distribution of GABAergic premotor nonspiking local interneurones in the terminal abdominal ganglion of the crayfish. J Comp Neurol 389:139–148

    Article  CAS  PubMed  Google Scholar 

  • Nagayama T, Aonuma H, Newland PL (1997b) Convergent chemical and electrical synaptic inputs from proprioceptive afferents onto an identified intersegmental interneuron in the crayfish. J Neurophysiol 77:2826–2830

    CAS  PubMed  Google Scholar 

  • Nagayama T, Kimura K, Araki M, Aonuma H, Newland PL (2004) Distribution of glutamatergic immunoreactive neurons in the terminal abdominal ganglion of the crayfish. J Comp Neurol 474:123–135

    Article  PubMed  Google Scholar 

  • Newland PL, Aonuma H, Nagayama T (1997) Monosynaptic excitation of lateral giant fibres by proprioceptive afferents in the crayfish. J Comp Physiol A 181:103–109

    Article  Google Scholar 

  • Roberts AC, Reichi J, Song MY, Dearinger AD, Moridzadeh N, Lu ED, Pearce K, Esdin J, Glanzman DL (2011) Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS ONE 6:e29132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roeder T (1999) Octopamine in invertebrates. Prog Neurobiol 59:533–561

    Article  CAS  PubMed  Google Scholar 

  • Sato D, Nagayama T (2012) Development of agonistic encounters in dominance hierarchy formation of juvenile crayfish. J Exp Biol 215:1210–1217

    Article  PubMed  Google Scholar 

  • Shirinyan D, Teshiba T, Taylor K, O’Neill P, Lee SC, Krasne FB (2006) Rostral ganglia are required for induction but not expression of crayfish escape reflex habituation: role of higher centers in reprogramming low-level circuits. J Neurophysiol 95:2721–2724

    Article  PubMed  Google Scholar 

  • Sosa MA, Spitzer N, Edwards DH, Baro DJ (2004) A crustacean serotonin receptor: cloning and distribution in the thoracic ganglia of crayfish and freshwater prawn. J Comp Neurol 473:526–537

    Article  CAS  PubMed  Google Scholar 

  • Spitzer N, Antonsen BL, Edwards DH (2005) Immunocytochemical mapping and quantification of expression of a putative type 1 serotonin receptor in the crayfish nervous system. J Comp Neurol 484:261–282

    Article  CAS  PubMed  Google Scholar 

  • Spitzer N, Edwards DH, Baro DJ (2008) Conservation of structure, signaling and pharmacology between two serotonin receptor subtypes from decapod crustaceans, Panulirus interruptus and Procambarus clarkii. J Exp Biol 211:92–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73:16–43

    Article  CAS  PubMed  Google Scholar 

  • Ueno R, Nagayama T (2012) Interlocking of chelae is a key factor for dominance hierarchy formation in crayfish. J Exp Biol 215:2841–2848

    Article  PubMed  Google Scholar 

  • Ushizawa T, Nagayama T, Takahata M (1996) Cholinergic transmission at mechanosensory afferents in the crayfish terminal abdominal ganglion. J Comp Physiol A 179:1–13

    Article  CAS  Google Scholar 

  • van Harreveld A (1936) A physiological solution for freshwater crustaceans. Proc Soc Exp Biol Med 34:428–432

    Article  Google Scholar 

  • Vu ET, Krasne FB (1992) Evidence for a computational distinction between proximal and distal neuronal inhibition. Science 255:1710–1712

    Article  CAS  PubMed  Google Scholar 

  • Vu ET, Krasne FB (1993) Crayfish tonic inhibition: prolonged modulation of behavioral excitability by classical GABAergic inhibition. J Neurosci 13:4394–4402

    CAS  PubMed  Google Scholar 

  • Vu ET, Lee SC, Krasne FB (1993) The mechanism of tonic inhibition of crayfish escape behavior: distal inhibition and its functional significance. J Neurosci 13:4379–4393

    CAS  PubMed  Google Scholar 

  • Wiersma CAG (1947) Giant nerve fiber system of the crayfish. A contribution to comparative physiology of synapse. J Neurophysiol 10:23–38

    CAS  PubMed  Google Scholar 

  • Wine JJ (1984) The Structural basis of an innate behavioural pattern. J Exp Biol 112:283–319

    Google Scholar 

  • Wine JJ, Krasne FB (1972) The organization of escape behaviour in the crayfish. J Exp Biol 56:1–18

    CAS  PubMed  Google Scholar 

  • Wine JJ, Krasne FB, Chen L (1975) Habituation and inhibition of the crayfish lateral giant fibre escape response. J Exp Biol 62:771–782

    CAS  PubMed  Google Scholar 

  • Yeh SR, Musolf BE, Edwards DH (1997) Neuronal adaptations to changes in the social dominance status of crayfish. J Neurosci 17:697–708

    CAS  PubMed  Google Scholar 

  • Zucker RS (1972a) Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber. J Neurophysiol 35:599–620

    CAS  PubMed  Google Scholar 

  • Zucker RS (1972b) Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation. J Neurophysiol 35:621–637

    CAS  PubMed  Google Scholar 

  • Zucker RS, Kennedy D, Selverston AI (1971) Neuronal circuit mediating escape responses in crayfish. Science 173:645–650

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Education, Science, Sport, Culture and Technology to T.N. We are grateful to Dr. H. Aonuma for his assistance of this work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Nagayama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagayama, T., Araki, M. Habituation of LG-mediated tailflip in the crayfish. Invert Neurosci 15, 2 (2015). https://doi.org/10.1007/s10158-015-0178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-015-0178-8

Keywords

Navigation