Skip to main content
Log in

Restructuring and aging in a capillary suspension

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological properties of capillary suspensions, suspensions with small amounts of an added immiscible fluid, are dramatically altered with the addition of the secondary fluid. We investigate a capillary suspension to determine how the network ages and restructures at rest and under applied external shear deformation. The present work uses calcium carbonate suspended in silicone oil (11 % solids) with added water as a model system. Aging of capillary suspensions and their response to applied oscillatory shear is distinctly different from particulate gels dominated by the van der Waals forces. The suspensions dominated by the capillary force are very sensitive to oscillatory flow, with the linear viscoelastic regime ending at a deformation of only 0.1 % and demonstrating power-law aging behavior. This aging persists for long times at low deformations or for shorter times with a sudden decrease in the strength at higher deformations. This aging behavior suggests that the network is able to rearrange and even rupture. This same sensitivity is not demonstrated in shear flow where very high shear rates are required to rupture the agglomerates returning the apparent viscosity of capillary suspensions to the same viscosity as for the pure vdW suspension. A transitional region is also present at intermediate water contents wherein the material response depends very strongly on the type, strength, and duration of the external forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aarons L, Sundaresan S (2006) Shear flow of assemblies of cohesive and non-cohesive granular materials. Powder Technol 169(1):10–21

    Article  Google Scholar 

  • Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interf Sci 100(102):503–546

    Article  Google Scholar 

  • Barnes HA (1989) Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366

    Article  Google Scholar 

  • Bocquet L, Charlaix E, Ciliberto S, Crassous J (1998) Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396:735–737

    Article  Google Scholar 

  • Butt HJ (2008) Capillary forces: influence of roughness and heterogeneity. Langmuir 24(9):4715–4721

    Article  Google Scholar 

  • Butt HJ, Kappl M (2009) Normal capillary forces. Adv Colloid Interf Sci 146(1–2):48–60

    Article  Google Scholar 

  • Cavalier K, Larché F (2002) Effects of water on the rheological properties of calcite suspensions in dioctylphthalate. Colloids Surf A 197(1–3):173–181

    Article  Google Scholar 

  • Cheng TL, Wang YU (2012) Spontaneous formation of stable capillary bridges for firming compact colloidal microstructures in phase separating liquids: a computational study. Langmuir 28(5):2696–2703

    Article  Google Scholar 

  • Dittmann J, Koos E, Willenbacher N (2013) Ceramic capillary suspensions: novel processing route for macroporous ceramic materials. J Am Ceram Soc 96(2):391–397

    Google Scholar 

  • Domenech T, Velankar SS (2014) Capillary driven percolating networks in ternary blends of immiscible polymers and silica particles. Rheol Acta 53(8):593–605

    Article  Google Scholar 

  • Eggleton AEJ, Puddington IE (1954) The effect of temperature on suspensions of glass beads in toluene containing various percentages of water. Can J Chem 32(2):86–93

    Article  Google Scholar 

  • Erwin BM, Vlassopoulos D, Cloitre M (2010) Rheological fingerprinting of an aging soft colloidal glass. J Rheol 54(4):915–939

    Article  Google Scholar 

  • Fielding SM, Sollich P, Cates ME (2000) Aging and rheology in soft materials. J Rheol 44(2):323–369

    Article  Google Scholar 

  • Fortini A (2012) Clustering and gelation of hard spheres induced by the Pickering effect. Phys Rev E 85(4):040401

    Article  Google Scholar 

  • Fournier CO, Fradette L, Tanguy PA (2009) Effect of dispersed phase viscosity on solid-stabilized emulsions. Chem Eng Res Des 87(4):499–506

    Article  Google Scholar 

  • Fraysse N, Thomé H, Petit L (1999) Humidity effects on the stability of a sandpile. Eur Phys J B 11(4):615–619

    Article  Google Scholar 

  • Gallay W, Puddington IE (1943) Sedimentation volumes and anamalous flow in lyophobic suspensions. Can J Chem 21(2):171

    Google Scholar 

  • Gao C (1997) Theory of menisci and its applications. Appl Phys Lett 71(13):1801–1803

    Article  Google Scholar 

  • Gillies G, Büscher K, Preuss M, Kappl M, Butt HJ, Graf K (2005) Contact angles and wetting behaviour of single micron-sized particles. J Phys Condens Matter 17(9):445–464

    Article  Google Scholar 

  • Gögelein C, Brinkmann M, Schröter M, Herminghaus S (2010) Controlling the formation of capillary bridges in binary liquid mixtures. Langmuir 26(22):17184–17189

    Article  Google Scholar 

  • Herminghaus S (2005) Dynamics of wet granular matter. Adv Phys 54(3):221–261

    Article  Google Scholar 

  • Hoffmann S, Koos E, Willenbacher N (2014) Using capillary bridges to tune stability and flow behavior of food suspensions. Food Hydrocoll 40:44–52

    Article  Google Scholar 

  • Kao SV, Nielsen LE, Hill CT (1975) Rheology of concentrated suspensions of spheres II Suspensions agglomerated by an immiscible second liquid. J Colloid Interface Sci 53(3):367–373

    Article  Google Scholar 

  • Koos E, Willenbacher N (2011) Capillary forces in suspension rheology. Science 331(6019):897–900

    Article  Google Scholar 

  • Koos E, Willenbacher N (2012) Particle configuration and gelation in capillary suspensions. Soft Matter 8(14):3988–3994

    Article  Google Scholar 

  • Koos E, Dittmann J, Willenbacher N (2011) Kapillarkräft in Suspensionen: rheologische Eigenschaften und potenzielle Anwendungen. Chemie Ingenieur Technik 83(8):1305–1309

    Article  Google Scholar 

  • Koos E, Johannsmeier J, Schwebler L, Willenbacher N (2012) Tuning suspension rheology using capillary forces. Soft Matter 8(24):6620–6628

    Article  Google Scholar 

  • Leong YK, Scales PJ, Healy TW, Boger DV, Bruscall R (1993) Rheological evidence of adsorbate-mediated short-range steric forces in concentrated dispersions. J Chemical Soc-Faraday Trans 89(14):2473–2478

    Article  Google Scholar 

  • Lian G, Thornton C, Adams MJ (1993) A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci 161(1):138–147

    Article  Google Scholar 

  • Mason G, Clark W (1968) Tensile strength of wet granular materials. Nature 219:149–150

    Article  Google Scholar 

  • McCulfor J, Himes P, Anklam MR (2011) The effects of capillary forces on the flow properties of glass particle suspensions in mineral oil. AlChE Journal 57(9):2334–2340

    Article  Google Scholar 

  • Megias-Alguacil D, Gauckler LJ (2009) Capillary forces between two solid spheres linked by a concave liquid bridge: regions of existence and forces mapping. AlChE Journal 55(5):1103–1109

    Article  Google Scholar 

  • Mehrotra VP, Sastry KVS (1980) Pendular bond strength between unequal-sized spherical-particles. Powder Technol 25(2):203–214

    Article  Google Scholar 

  • Nakae H, Inui R, Hirata Y, Saito H (1998) Effects of surface roughness on wettability. Acta Mater 46(7):2313–2318

    Article  Google Scholar 

  • Narayanan T, Kumar A, Gopal ES, Beysens D, Guenoun P, Zalczer G (1993) Reversible flocculation of silica colloids in liquid mixtures. Phys Rev E 48(3):1989–1994

    Article  Google Scholar 

  • Negi AS, Osuji CO (2010) Physical aging and relaxation of residual stresses in a colloidal glass following flow cessation. J Rheol 54(5):943–958

    Article  Google Scholar 

  • Orr FM, Scriven LE, Rivas AP (1975) Pendular rings between solids: meniscus properties and capillary force. J Fluid Mech 67(4):723–742

    Article  Google Scholar 

  • Ovarlez G, Coussot P (2007) Physical age of soft-jammed systems. Phys Rev E 76(1):011406

    Article  Google Scholar 

  • Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2008) Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J Rheol 52(2):649–676

    Article  Google Scholar 

  • Pietsch WB (1968) Tensile strength of granular materials. Nature 217:736–737

    Article  Google Scholar 

  • Pietsch WB, Rumpf H (1967) Haftkraft, Kapillardruck, Flüssigkeitsvolumen und Grenzwinkel einer Flüssigkeitsbrücke zwischen zwei Kugeln. Chemie Ingenieur Technik 39(15):885–893

    Article  Google Scholar 

  • Rahbari SHE, Vollmer J, Herminghaus S, Brinkmann M (2009) A response function perspective on yielding of wet granular matter. Europhys Lett 87(1):14002

    Article  Google Scholar 

  • Rumpf H (1962) The strength of granules and agglomerates. In: Knepper WA (ed) Agglomeration. Wiley, New York, pp 379–418

    Google Scholar 

  • Schubert H (1982) Kapillarität in porösen Feststoffsystemen. Springer, Berlin

    Book  Google Scholar 

  • Schubert H (1984) Capillary forces—modeling and application in particulate technology. Powder Technol 37(1):105–116

    Article  Google Scholar 

  • Seville JPK, Willett CD, Knight PC (2000) Interparticle forces in fluidisation: a review. Powder Technol 113(3):261–268

    Article  Google Scholar 

  • Stiller S, Gers-Barlag H, Lergenmueller M, Pflücker F, Schulzb J, Wittern KP, Daniels R (2004) Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides. Colloids Surf A 232(2–3):261–267

    Article  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  Google Scholar 

  • Willenbacher N, Hanciogullari H, Wagner HG (1997) High shear viscosity of paper coating colors—more than just viscosity. Chem Eng Technol 20(8):557–563

    Article  Google Scholar 

  • Willett CD, Adams MJ, Johnson SA, Seville JPK (2000) Capillary bridges between two spherical bodies. Langmuir 16(24):9396–9405

    Article  Google Scholar 

  • Yan LL, Wang K, Wu JS, Ye L (2007) Hydrophobicity of model surfaces with closely packed nano- and micro-spheres. Colloids Surf A 296(1–3):123–131

    Article  Google Scholar 

Download references

Acknowledgments

EK would like to acknowledge financial support from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement no. 335380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Koos.

Additional information

Special issue devoted to novel trends in rheology

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koos, E., Kannowade, W. & Willenbacher, N. Restructuring and aging in a capillary suspension. Rheol Acta 53, 947–957 (2014). https://doi.org/10.1007/s00397-014-0805-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0805-z

Keywords

Navigation