Skip to main content
Log in

Counter machines and crystallographic structures

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

One way to depict a crystallographic structure is by a periodic (di)graph, i.e., a graph whose group of automorphisms has a translational subgroup of finite index acting freely on the structure. We establish a relationship between periodic graphs representing crystallographic structures and an infinite hierarchy of intersection languages \(\mathcal {DCL}_d,\,d=0,1,2,\ldots \), within the intersection classes of deterministic context-free languages. We introduce a class of counter machines that accept these languages, where the machines with d counters recognize the class \(\mathcal {DCL}_d\). An intersection of d languages in \(\mathcal {DCL}_1\) defines \(\mathcal {DCL}_d\). We prove that there is a one-to-one correspondence between sets of walks starting and ending in the same unit of a d-dimensional periodic (di)graph and the class of languages in \(\mathcal {DCL}_d\). The proof uses the following result: given a digraph \(\Delta \) and a group G, there is a unique digraph \(\Gamma \) such that \(G\le \mathrm{Aut}\,\Gamma ,\,G\) acts freely on the structure, and \(\Gamma /G \cong \Delta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Autebert J-M, Berstel J, Boasson L (1997) Context-free languages and pushdown automata. In: Rozenberg G, Salomaa A (eds) Handbook of formal languages, vol. 1: word, language, grammar. Springer, Berlin, pp 111–174

    Chapter  Google Scholar 

  • Beukemann A, Klee WE (1992) Minimal nets. Z. für Kristallographie 201(1–2):37–51

    Article  MathSciNet  MATH  Google Scholar 

  • Chiniforooshan E, Daley M, Ibarra OH, Kari L, Seki S (2012) One-reversal counter machines and multihead automata: revisited. Theor Comput Sci 454:81–87

    Article  MathSciNet  MATH  Google Scholar 

  • Chung SJ, Hahn T, Klee WE (1984) Nomenclature and generation of three-periodic nets: the vector method. Acta Crystallogr A 40:42–50

    Article  MathSciNet  MATH  Google Scholar 

  • Cleary S, Elder M, Ostheimer G (2006) The word problem distinguishes counter languages. ArXiv mathematics e-prints

  • Cohen E, Megiddo N (1991) Recognizing properties of periodic graphs. J Appl Geom Discrete Math 4:135–146

    MathSciNet  Google Scholar 

  • Delgado-Friedrichs O (2005) Equilibrium placement of periodic graphs and convexity of plane tilings. Discrete Comput Geom 33:67–81

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado-Friedrichs O (2012) Personal communication

  • Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2007) Taxonomy of periodic nets and the design of materials. Phys Chem Chem Phys 9:1035–1043

    Article  Google Scholar 

  • Dicks W, Dunwoody MJ (1989) Groups acting on graphs. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Elder M, Kambites M, Ostheimer G (2008) On groups and counter automata. Int J Algebra Comput 18(08):1345–1364

    Article  MathSciNet  MATH  Google Scholar 

  • Eon J-G (2005) Graph-theoretical characterization of periodicity in crystallographic nets and other infinite graphs. Acta Crystallogr A 61:501–511

    Article  MathSciNet  Google Scholar 

  • Glusker JP (1990) Brief history of chemical crystallography. ii: organic compounds. In: Lima-De-Faria J (ed) Historical atlas of crystallography. Kluwer, Dordrecht, pp 91–107

    Google Scholar 

  • Gross J, Yellen J (2003) Voltage graphs. In: Gross J, Yellen J (eds) Handbook of graph theory. Taylor & Francis, London, pp 661–684

    Chapter  Google Scholar 

  • Gross JL (1974) Voltage graphs. Discrete Math 9:239–246

    Article  MathSciNet  MATH  Google Scholar 

  • Gross JL, Tucker TW (1977) Generating all graph coverings by permutation voltage assignments. Discrete Math 18:273–283

    Article  MathSciNet  MATH  Google Scholar 

  • Hopcroft JE, Ullman J (1979) Introduction to automata theory, languages, and computation. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Ibarra O (1978) Reversal-bounded multicounter machines and their decision problems. J Assoc Comput Mach 25:116–133

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra O, Yen H-C (2011) On two-way transducers. In: Mauri G and Leporati A (eds) Developments in language theory: 15th international conference, DLT 2011, Milan, Italy, July 2011, proceedings (LNCS 6975). Springer, pp 300–311

  • Jonoska N, Krajčevski M, McColm G (2014) Languages associated with crystallographic symmetry. In: Ibarra OH, Kari L, Kopecki S (eds) Unconventional computation and natural computation, lecture notes in computer science. Springer International Publishing, pp 216–228

  • Jonoska N, McColm G (2006) Flexible versus rigid tile assembly. In: C. C. S. et al (eds) 5th international conference on unconventional computation (LNCS 4135). Springer, pp 421–436

  • Jonoska N, McColm G (2009) Complexity classes for self-assembling flexible tiles. Theor Comput Sci 410(4–5):332–346

    Article  MathSciNet  MATH  Google Scholar 

  • Kambites M (2009) Formal languages and groups as memory. Commun Algebra 37(1):193–208

    Article  MathSciNet  MATH  Google Scholar 

  • Kintala CM (1978) Refining nondeterminism in context-free languages. Math Syst Theory 12(1):1–8

    Article  MathSciNet  MATH  Google Scholar 

  • Klee WE (2004) Crystallographic nets and their quotient graphs. Cryst Res Technol 39(11):959–968

    Article  Google Scholar 

  • Liu LY, Weiner P (1973) An infinite hierarchy of intersections of context-free languages. Math Syst Theory 7(2):185–192

    Article  MathSciNet  MATH  Google Scholar 

  • McColm G (2012) Generating graphs using automorphisms. J Graph Algorithms Appl 16(2):507–541

    Article  MathSciNet  MATH  Google Scholar 

  • Meier J (2008) Groups, graphs and trees: an introduction to the geometry of infinite groups. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Minsky M (1967) Computation: finite and infinite machines. Prentice-Hall, Inc., Englewood Cliffs

    MATH  Google Scholar 

  • Moore PB (1990) Brief history of chemical crystallography. i: inorganic compounds. In: Lima-De-Faria J (ed) Historical atlas of crystallography. Kluwer, Dordrecht, pp 77–90

    Google Scholar 

  • O’Keeffe M, Hyde BG (1996) Crystal structures I. Patterns and symmetry. Mineralogical Society of America, Washington

    Google Scholar 

  • Radaelli P (2011) Symmetry in crystallography: understanding the international tables. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schwarzenberger RLE (1980) N-dimensional crystallography. Pitman, London

    MATH  Google Scholar 

  • Seki S (2013) N-dimensional crystallography. Private Commun

  • Wang C, Liu D, Lin W (2013) Metal-organic frameworks as a tunable platform for designing functional molecular materials. J Am Chem Soc 135(36):13222–13234

    Article  Google Scholar 

  • Wells AF (1977) Three-dimensional nets and polyhedra. Wiley, New York

    Google Scholar 

  • Yale P (1968) Geometry and symmetry. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Zaslavsky T (1989) Biased graphs. i. Bias, balance, and gains. J Comb Theory Ser B 47:32–52

    Article  MathSciNet  MATH  Google Scholar 

  • Zaslavsky T (1991) Biased graphs. ii. The three matroids. J Comb Theory Ser B 51:46–72

    Article  MathSciNet  MATH  Google Scholar 

  • Zaslavsky T (1999) A mathematical bibliography of signed and gain graphs and allied areas. Electron J Comb DS8

  • Zhang W, Oganov AR, Goncharov AF, Zhu Q, Boulfelfel SE, Lyakhov AO, Stavrou E, Somayazulu M, Prakapenka VB, Konpkov Z (2013) Unexpected stable stoichiometries of sodium chlorides. Science 342(6165):1502–1505

    Article  Google Scholar 

  • Zheng J, Birktoft J, Chen Y, Wang T, Sha R, Constantinou P, Ginell S, Mao C, Seeman N (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461(7260):74–77

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the NSF Grant CCF-1117254 and the NIH Grant R01GM109459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jonoska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonoska, N., Krajcevski, M. & McColm, G. Counter machines and crystallographic structures. Nat Comput 15, 97–113 (2016). https://doi.org/10.1007/s11047-015-9527-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-015-9527-0

Keywords

Navigation