Skip to main content
Log in

Monosaccharide profiling of silkworm (Bombyx mori L.) nervous system during development and aging

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Glycoconjugates have various functions in differentiation, development, aging and in all aspects of normal functioning of organisms. The reason for increased research on this topic is that glycoconjugates locate mostly on the cell surface and play crucial biological roles in the nervous system including brain development, synaptic plasticity, learning, and memory. Considering their roles in the nervous system, information about their existence in the insect nervous system is rather sparse. Therefore, in order to detect monosaccharide content of N- and O-glycans, we carried out capLC–ESI–MS/MS analysis to determine the concentration changes of glucose, mannose, galactose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose, xylose, arabinose, and ribose monosaccharides in the nervous system of Bombyx mori during development and aging processes. In addition to LC–MS, lectin blotting was done to detect quantitative changes in N- and O-glycans. Developmental stages were selected as 3rd (the youngest sample), 5th (young) larval instar, motionless prepupa (the oldest sample), and pupa (adult development). Derivatization of monosaccharides was performed with a solution of PMP agent and analyzed with capLC–ESI–MS/MS. For lectin blotting, determination of glycan types was carried out with Galanthus nivalis agglutinin and Peanut agglutinin lectins. In all stages, the most abundant monosaccharide was glucose. Although all monosaccharides were present most abundantly in the youngest stage (3rd instar), they are generally reduced gradually during the aging process. It was observed that amounts of monosaccharides increased again in the pupa stage. According to lectin blotting, N- and O-linked glycoproteins expressions were different and there were some specific glycoprotein expression differences between stages. These findings suggest that the glycosylation state of proteins in the nervous system changes during development and aging in insects in a similar fashion to that reported for vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anumula KR (1994) Quantitative determination of monosaccharides in glycoproteins by high-performance liquid chromatography with highly sensitive fluorescence detection. Anal Biochem 220:275–283

    Article  CAS  PubMed  Google Scholar 

  • Anumula KR (2000) High-sensitivity and high-resolution methods for glycoprotein analysis. Anal Biochem 283(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Perlman M, Lim J, Cantu R, Wells L, Tiemeyer M (2007) Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J Biol Chem 282:9127–9142

    Article  CAS  PubMed  Google Scholar 

  • Bhavanandan VP, Gowda DC (2014) Introduction to the complexity of cell surface and tissue matrix glycoconjugates. Adv Neurobiol 9:1–31

    Article  PubMed  Google Scholar 

  • Bollag M, Rozycki MD, Edelstein SJ (1996) Protein methods, 2nd edn. Wiley-Liss Inc., New York

    Google Scholar 

  • Brooks SA, Leathem A (1998) Expression of N-acetyl galactosaminylated and sialylated glycans by metastases arising from primary breast cancer. Invasion Metastasis 18(3):115–121

    Article  CAS  PubMed  Google Scholar 

  • Brooks SA, Dwek MV, Schumacher U (2002) Functional and molecular glycobiology, 1st edn. BIOS Scientific, Oxford

    Google Scholar 

  • Codogno P, Bernard B, Font J, Aubery M (1983) Changes in protein glycosylation during chick embryo development. Biochim Biophys Acta 763(3):265–275

    Article  CAS  PubMed  Google Scholar 

  • Colley KJ (2010) Structural basis for the polysialylation of the neural cell adhesion molecule. Adv Exp Med Biol 663:111–126

    Article  CAS  PubMed  Google Scholar 

  • Duverger E, Frison N, Roche AC, Monsigny M (2003) Carbohydrate–lectin interactions assessed by surface plasmon resonance. Biochimie 85(1–2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Finne J (1997) Carbohydrate units of nervous tissue glycoproteins. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins II. Elsevier Science B.V., Amsterdam

    Google Scholar 

  • Gabius HJ (2009) The sugar code: fundamentals of glycosciences, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Gabius HJ, Gabius S (1993) Lectins and glycobiology. Springer, Tokyo

    Book  Google Scholar 

  • Garenaux E, Maes E, Levêque S, Brassart C, Guerardel Y (2011) Structural characterization of complex O-linked glycans from insect-derived material. Carbohydr Res 346(9):1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith MR, Marec F (2010) Molecular biology and genetics of the Lepidoptera. In: Miller TA (ed) Contemporary topics in entomology series. CRC Press, Boca Raton

    Google Scholar 

  • Goldstein IJ, Hayes CE (1978) The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–340

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Harazono A, Kobayashi T, Kawasaki N, Itoh S, Tada M, Hashii N, Ishii A, Arato T, Yanagihara S, Yagi Y, Koga A, Tsuda Y, Kimura M, Sakita M, Kitamura S, Yamaguchi H, Mimura H, Murata Y, Hamazume Y, Sato T, Natsuka S, Kakehi K, Kinoshita M, Watanabe S, Yamaguchi T (2011) A comparative study of monosaccharide composition analysis as a carbohydrate test for biopharmaceuticals. Biologicals 39(3):171–180

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi J (2014) Lectins: methods and protocols. Humana Press, New York

    Book  Google Scholar 

  • Ishii A, Ikeda T, Hitoshi S, Fujimoto I, Torii T, Sakuma K, Nakakita S, Hase S, Ikenaka K (2007) Developmental changes in the expression of glycogenes and the content of N-glycans in the mouse cerebral cortex. Glycobiology 3:261–276

    Google Scholar 

  • Kamimura K, Koyama T, Habuchi H, Ueda R, Masu M, Kimata K, Nakato H (2006) Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol 174:773–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kim SI, Ha KS, Leem SH (2000) An improved method for quantitative sugar analysis of glycoproteins. Exp Mol Med 32(3):141–145

    Article  CAS  PubMed  Google Scholar 

  • Koles K, Lim JM, Aoki K, Porterfield M, Tiemeyer M, Wells L, Panin VM (2007) Identification of N-glycosylated proteins from the central nervous system of Drosophila melanogaster. Glycobiology 17:1388–1403

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Li JS, Zhong BX (2012) Proteomic profiling of the hemolymph at the fifth instar of the silkworm Bombyx mori. Insect Sci 19:441–454

    Article  CAS  Google Scholar 

  • McMaster MC (2005) LC/MS: a practical user’s guide. Wiley, New York

    Book  Google Scholar 

  • Muhlenhoff M, Eckhardt M, Gerardy-Schahn R (1998) Polysialic acid: three-dimensional structure, biosynthesis and function. Curr Opin Struct Biol 8(5):558–564

    Article  CAS  PubMed  Google Scholar 

  • Muhlenhoff M, Oltmann-Norden I, Weinhold B, Hildebrandt H, Gerardy-Schahn R (2009) Brain development needs sugar: the role of polysialic acid in controlling NCAM functions. Biol Chem 390(7):567–574

    Article  PubMed  Google Scholar 

  • Nishihara S (2010) Glycosyltransferases and transporters that contribute to proteoglycan synthesis in Drosophila: identification and functional analyses using the heritable and inducible RNAi system. Methods Enzymol 480:323–351

    Article  CAS  PubMed  Google Scholar 

  • North SJ, Koles K, Hembd C, Morris HR, Dell A, Panin VM, Haslam SM (2006) Glycomics studies of Drosophila melanogaster embryos. Glycoconj J 23:345–354

    Article  CAS  PubMed  Google Scholar 

  • Oh JH, Jeon YJ, Jeong SY, Hong SM, Lee JS, Nho SK, Kang SW, Kim NS (2006) Gene expression profiling between embryonic and larval stages of the silkworm, Bombyx mori. Biochem Biophys Res Commun 343(3):864–872

    Article  CAS  PubMed  Google Scholar 

  • Pakkianathan BC, Singh NK, König S, Krishnan M (2015) Antiapoptotic activity of 30 kDa lipoproteins family from fat body tissue of silkworm, Bombyx mori. Insect Sci 22(5):629–638

    Article  CAS  PubMed  Google Scholar 

  • Park YI, Wood HA, Lee YC (1999) Monosaccharide compositions of Danaus plexippus (monarch butterfly) and Trichoplusia ni (cabbage looper) egg glycoproteins. Glycoconj J 16(10):629–638

    Article  CAS  PubMed  Google Scholar 

  • Patsos G, Corfield A (2009) O-glycosylation. In: Gabius HJ (ed) The sugar code: fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 111–137

    Google Scholar 

  • Pipa RL (1963) Studies on the hexapod nervous system. VII.Ventral nerve cord shortening; a metamorphic process in Galleria mellonella (L.). Z Zellforsch Mikrosk Anat 63:405–417

    Article  Google Scholar 

  • Rendic D, Wilson IBH, Paschinger K (2008) The glycosylation capacity of insect cells. Croat Chem Acta 81(1):7–21

    CAS  Google Scholar 

  • Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9(1):26–35

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Kimura M, Endo T (1998) Comparison of lectin-binding patterns between young adults and older rat glycoproteins in the brain. Glycoconj J 15(12):1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Scott H, Panin VM (2014) The role of protein N-glycosylation in neural transmission. Glycobiology 24(5):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya N, Goldstein J, Van Damme EJM, Peumanns WJ (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J Biol Chem 263:728–734

    CAS  PubMed  Google Scholar 

  • Stepan H, Staudacher E (2011) Optimization of monosaccharide determination using anthranilic acid and 1-phenyl-3-methyl-5-pyrazolone for gastropod analysis. Anal Biochem 418(1):24–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor ME, Drickamer K (2011) Introduction to glycobiology, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Theopold U, Dorian C, Schmidt O (2001) Changes in glycosylation during Drosophila development. The influence of ecdysone on hemomucin isoforms. Insect Biochem Mol Biol 31(2):189–197

    Article  CAS  PubMed  Google Scholar 

  • Tian E, Ten Hagen KG (2007a) O-linked glycan expression during Drosophila development. Glycobiology 17:820–827

    Article  CAS  PubMed  Google Scholar 

  • Tian E, Ten Hagen KG (2007b) A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase is required for epithelial tube formation. J Biol Chem 282:606–614

    Article  CAS  PubMed  Google Scholar 

  • Torii T, Yoshimura T, Narumi M, Hitoshi S, Takaki Y, Tsuji S, Ikenaka K (2014) Determination of major sialylated N-glycans and identification of branched sialylated N-glycans that dynamically change their content during development in the mouse cerebral cortex. Glycoconj J 31(9):671–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varki A, Lowe JB (2008) Biological roles of glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York, pp 75–88

    Google Scholar 

  • Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Vijayan M, Chandra N (1999) Lectins. Curr Opin Struct Biol 9(6):707–714

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Song D, Pedersen LC, Liu J (2007) Mutational study of heparan sulfate 2-O-sulfotransferase and chondroitin sulfate 2-O-sulfotransferase. J Biol Chem 282:8356–8367

    Article  CAS  PubMed  Google Scholar 

  • Yu RK, Schengrund CL (eds) (2014) Glycobiology of the nervous system. In: Advances in neurobiology, vol 9. Springer, Berlin

  • Yuriev E, Ramsland PA (2013) Structural glycobiology. Taylor and Francis, London

    Google Scholar 

  • Zhang L, Xu J, Zhang L, Zhang W, Zhang Y (2003) Determination of 1-phenyl-3-methyl-5-pyrazolone-labeled carbohydrates by liquid chromatography and micellar electrokinetic chromatography. J Chromatogr B Anal Technol Biomed Life Sci 793(1):159–165

    Article  CAS  Google Scholar 

  • Zuber C, Roth J (2009) N-Glycosylation. In: Gabius HJ (ed) The sugar code: fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 87–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seçkin Soya.

Ethics declarations

Conflict of interest

We certify that there is no actual or potential conflict of interest in relation to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soya, S., Şahar, U. & Karaçalı, S. Monosaccharide profiling of silkworm (Bombyx mori L.) nervous system during development and aging. Invert Neurosci 16, 8 (2016). https://doi.org/10.1007/s10158-016-0191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-016-0191-6

Keywords

Navigation