Skip to main content
Log in

Modeling thermophoretic effects in solid-state nanopores

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Local modulation of temperature has emerged as a new mechanism for regulation of molecular transport through nanopores. Predicting the effect of such modulations on nanopore transport requires simulation protocols capable of reproducing non-uniform temperature gradients observed in experiment. Conventional molecular dynamics (MD) method typically employs a single thermostat for maintaining a uniform distribution of temperature in the entire simulation domain, and, therefore, can not model local temperature variations. In this article, we describe a set of simulation protocols that enable modeling of nanopore systems featuring non-uniform distributions of temperature. First, we describe a method to impose a temperature gradient in all-atom MD simulations based on a boundary-driven non-equilibrium MD protocol. Then, we use this method to study the effect of temperature gradient on the distribution of ions in bulk solution (the thermophoretic effect). We show that DNA nucleotides exhibit differential response to the same temperature gradient. Next, we describe a method to directly compute the effective force of a thermal gradient on a prototypical biomolecule—a fragment of double-stranded DNA. Following that, we demonstrate an all-atom MD protocol for modeling thermophoretic effects in solid-state nanopores. We show that local heating of a nanopore volume can be used to regulate the nanopore ionic current. Finally, we show how continuum calculations can be coupled to a coarse-grained model of DNA to study the effect of local temperature modulation on electrophoretic motion of DNA through plasmonic nanopores. The computational methods described in this article are expected to find applications in rational design of temperature-responsive nanopore systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dekker, C.: Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007)

    Article  Google Scholar 

  2. Kasianowicz, J.J., Robertson, J.W.F., Chan, E.R., Reiner, J.E., Stanford, V.M.: Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 1, 737–766 (2008)

    Article  Google Scholar 

  3. Howorka, S., Siwy, Z.: Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38(8), 2360–2384 (2009)

    Article  Google Scholar 

  4. Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S.B., Krstic, P.S., Lindsay, S.: Xinsheng Sean, L., Mastrangelo, C.H., Meller, A., Oliver, J.S., Pershin, Y.V., Ramsey, J.M., Riehn, R., Soni, G.V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., Schloss, J.A.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10), 1146–1153 (2008)

    Article  Google Scholar 

  5. Timp, W., Mirsaidov, U.M., Wang, D., Comer, J., Aksimentiev, A., Timp, G.: Nanopore sequencing: electrical measurements of the code of life. IEEE Trans. Nanotechnol. 9(3), 281–294 (2010)

    Article  Google Scholar 

  6. Venkatesan, B.M., Estrada, D., Banerjee, S., Jin, X., Dorgan, V.E., Bae, M.-H., Aluru, N.R., Pop, E., Bashir, R.: Stacked graphene-\(\text{ Al }_{2}\text{ O }_{3}\) nanopore sensors for sensitive detection of DNA and DNA-protein complexes. ACS Nano 6(1), 441–450 (2012)

    Article  Google Scholar 

  7. Kasianowicz, J.J., Brandin, E., Branton, D., Deamer, D.W.: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996)

    Article  Google Scholar 

  8. Luan, B., Aksimentiev, A.: Electro-osmotic screening of the DNA charge in a nanopore. Phys. Rev. E 78, 021912 (2008)

    Article  Google Scholar 

  9. Keyser, U.F.: Controlling molecular transport through nanopores. J. R. Soc. Interface 8(63), 1369–1378 (2011)

    Article  Google Scholar 

  10. Heng, J.B., Ho, C., Kim, T., Timp, R., Aksimentiev, A., Grinkova, Y.V., Sligar, S., Schulten, K., Timp, G.: Sizing DNA using a nanometer-diameter pore. Biophys. J. 87, 2905–2911 (2004)

    Article  Google Scholar 

  11. Comer, J., Dimitrov, V., Zhao, Q., Timp, G., Aksimentiev, A.: Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. Biophys. J. 96(2), 593–608 (2009)

    Article  Google Scholar 

  12. Firnkes, M., Pedone, D., Knezevic, J., Doblinger, M., Rant, U.: Electrically facilitated translocations of proteins through silicon nitride nanopores: Conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 10(6), 2162–2167 (2010)

    Article  Google Scholar 

  13. Jubery, T.Z., Prabhu, A.S., Kim, M.J., Dutta, P.: Modeling and simulation of nanoparticle separation through a solid-state nanopore. Electrophoresis 33(2), 325–333 (2012)

    Article  Google Scholar 

  14. Nadtochiy, A., Melnikov, D., Gracheva, M.: Filtering of nanoparticles with tunable semiconductor membranes. ACS Nano 7(8), 7053–7061 (2013)

    Article  Google Scholar 

  15. Meller, A., Nivon, L., Branton, D.: Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001)

    Article  Google Scholar 

  16. Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A.Y., Meller, A.: Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5(2), 169–165 (2010)

    Article  Google Scholar 

  17. Jung, Y., Bayley, H., Movileanu, L.: Temperature-responsive protein pores. J. Am. Chem. Soc. 128(47), 15332–15340 (2006)

  18. Reber, N., Kuchel, A., Spohr, R., Wolf, A., Yoshida, M.: Transport properties of thermo-responsive ion track membranes. J. Memb. Sci. 193(1), 49–58 (2001)

    Article  Google Scholar 

  19. Schepelina, O., Zharov, I.: PNIPAAM-modified nanoporous colloidal films with positive and negative temperature gating. Langmuir 23(25), 12704–12709 (2007)

    Article  Google Scholar 

  20. Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O.: Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5(11), 1287–1291 (2009)

    Article  Google Scholar 

  21. Guo, W., Xia, H., Fan, X., Xu, H., Liuxuan, C., Wang, L., Xue, J., Zhang, G., Song, Y., Zhu, D., Wang, Y., Jiang, L.: Current rectification in temperature-responsive single nanopores. ChemPhysChem 11(4), 859–864 (2010)

    Article  Google Scholar 

  22. Nasir, S., Ali, M., Ensinger, W.: Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes. Nanotechnology 23(22), 225502 (2012)

    Article  Google Scholar 

  23. Jonsson, M.P., Dekker, C.: Plasmonic nanopore for electrical profiling of optical intensity landscapes. Nano Lett. 13(3), 1029–1033 (2013)

    Article  Google Scholar 

  24. Reiner, J.E., Robertson, J.W.F., Burden, D.L., Burden, L.K., Balijepalli, A., Kasianowicz, J.J.: Temperature sculpting in yoctoliter volumes. J. Am. Chem. Soc. 135(8), 3087–3094 (2013)

    Article  Google Scholar 

  25. Harata, A., Shen, Q., Sawada, T.: Photothermal applications of lasers: study of fast and ultrafast photothermal phenomena at metal-liquid interfaces. Annu. Rev. Phys. Chem. 50, 193–219 (1999)

    Article  Google Scholar 

  26. Min, H., Petrova, H., Hartland, G.V.: Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures. Chem. Phys. Lett. 391, 220–225 (2004)

    Article  Google Scholar 

  27. Merabia, S., Shenogin, S., Joly, L., Keblinski, P., Barrat, J.-L.: Heat transfer from nanoparticles: A corresponding state analysis. Proc. Natl. Acad. Sci. USA 106(36), 15113–15118 (2009)

    Article  Google Scholar 

  28. Belkin, M., Maffeo, C., Wells, D.B., Aksimentiev, A.: Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores. ACS Nano 7(8), 6816–6824 (2013)

    Article  Google Scholar 

  29. He, Y., Tsutsui, M., Scheicher, R.H., Bai, F., Taniguchi, M., Kawai, T.: Thermophoretic manipulation of DNA translocation through nanopores. ACS Nano 7(1), 538–546 (2013)

    Article  Google Scholar 

  30. Duhr, S., Braun, D.: Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Phys. Rev. Lett. 97(3), 038103 (2006)

    Article  Google Scholar 

  31. Jerabek-Willemsen, M., Wienken, C.J., Braun, D., Baaske, P., Duhr, S.: Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9(4), 342–353 (2011)

  32. Ludwig, C.: Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen. Sitzungsber. Akad. Wiss. Wien Math.-Naturwiss. 20, 539 (1856)

  33. Soret, C.: Sur l’état d’équilibre que prend, du point de vue de sa concentration, une dissolution saline primitivement homogéne, dont deux parties sont portées a des températures différentes. Arch. Sci. Phys. Nat. 2, 48–61 (1879)

  34. Tanner, C.C.: The Soret effect. Part i. Trans. Faraday Soc. 23, 75–95 (1927)

    Article  Google Scholar 

  35. Agar, J.N., Turner, J.C.R.: Thermal diffusion in solutions of electrolytes. Proc. R. Soc. A 255(1282), 307–330 (1960)

    Article  Google Scholar 

  36. Snowdon, P.N., Turner, J.C.R.: The Soret effect in some 0.01 normal aqueous electrolytes. Trans. Faraday Soc. 56(10), 1409–1418 (1960)

    Article  Google Scholar 

  37. Debye, P., Bueche, A.M.: Remsen Press Division. Chemical Pub. Co., Brooklyn (1948)

    Google Scholar 

  38. Emery, A.H., Drickamer, H.G.: Thermal diffusion in polymer solutions. J. Chem. Phys. 23(12), 2252–2257 (1955)

    Article  Google Scholar 

  39. McNab, G.S., Meisen, A.: Thermophoresis in liquids. J. Colloid Interface Sci. 44(2), 339–346 (1973)

    Article  Google Scholar 

  40. Giglio, M., Vendramini, A.: Soret-type motion of macromolecules in solution. Phys. Rev. Lett. 38(1), 26–30 (1977)

    Article  Google Scholar 

  41. Caldwell, D.R., Eide, S.A.: Separation of seawater by Soret diffusion. Deep-Sea Res. 32(8), 965–982 (1985)

    Article  Google Scholar 

  42. Alexander, F.: Zur Theorie der Thermodiffusion in Flüssigkeiten. Akademische Verlag Ges, Leipzig (1954)

  43. Wood, C., Hawksworth, W.: Thermal diffusion of 1:1 electrolytes in ordinary and in heavy water. Afr. Chem. Inst. 24, 170 (1971)

  44. Caldwell, D.R.: Thermal and Fickian diffusion of sodium chloride in a solution of oceanic concentration. Deep-Sea Res. 20(11), 1029–1039 (1973)

    Google Scholar 

  45. Gaeta, F.S.: Radiation pressure theory of thermal diffusion in liquids. Phys. Rev. 182(1), 289–296 (1969)

    Article  MathSciNet  Google Scholar 

  46. Colombani, J., Bert, J., Dupuy-Philon, J.: Thermal diffusion in (LiCl, RH2O). J. Chem. Phys. 110(17), 8622–8627 (1999)

    Article  Google Scholar 

  47. Morozov, K.: Thermal diffusion in disperse systems. J. Exp. Theor. Phys. 88, 944–946 (1999)

    Article  Google Scholar 

  48. Duhr, S., Braun, D.: Thermophoretic depletion follows Boltzmann distribution. Phys. Rev. Lett. 96, 168301 (2006)

    Article  Google Scholar 

  49. Rusconi, R., Isa, L., Piazza, R.: Thermal-lensing measurement of particle thermophoresis in aqueous dispersions. J. Opt. Soc. Am. B 21(3), 605–616 (2004)

    Article  Google Scholar 

  50. Debuschewitz, C., Kohler, W.: Molecular origin of thermal diffusion in benzene plus cyclohexane mixtures. Phys. Rev. Lett. 87(5), 055901 (2001)

    Article  Google Scholar 

  51. Helfand, E., Kirkwood, J.G.: Theory of the heat of transport of electrolytic solutions. J. Chem. Phys. 32(3), 857–866 (1960)

  52. Schimpf, M.E., Caldwell, K., Giddings, J.C.: Field-Flow Fractionation Handbook. Wiley, New York (2000)

    Google Scholar 

  53. Jiang, H.-R., Sano, M.: Stretching single molecular dna by temperature gradient. Appl. Phys. Lett. 91(15), 154104 (2007)

  54. Gaeta, F.S., Bencivenga, U., Canciglia, P., Rossi, S., Mita, D.G.: Temperature gradients and prebiological evolution. Cell Biophys. 10, 103–125 (1987)

    Article  Google Scholar 

  55. Braun, R., Sarikaya, M., Schulten, K.: Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics. J. Biomater. Sci. 13, 747–758 (2002)

    Article  Google Scholar 

  56. Duhr, S., Braun, D.: Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA 103(52), 19678–19682 (2006)

    Article  Google Scholar 

  57. Parola, A., Piazza, R.: A microscopic approach to thermophoresis in colloidal suspensions. J. Phys.: Condens. Matter 17(45, SI), S3639–S3643 (2005)

  58. Schimpf, M.E., Semenov, S.N.: Symmetric diffusion equations, barodiffusion, and cross-diffusion in concentrated liquid mixtures. Phys. Rev. E 70, 031202 (2004)

  59. Ham, J.S.: Kinetic theory of thermal diffusion in dilute polymer solutions. J. Appl. Phys. 31(11), 1853–1858 (1960)

    Article  MathSciNet  Google Scholar 

  60. Khazanovich, T.N.: On the theory of thermal diffusion in dilute polymer solutions. J. Polymer Sci. : Part C 16, 2463–2468 (1967)

  61. Mes, E.P.C., Kok, WTh, Tijssen, R.: Prediction of polymer thermal diffusion coefficients from polymer-solvent interaction parameters: Comparison with thermal field flow fractionation and thermal diffusion forced rayleigh scattering experiments. Int. J. Polym. Anal. Charact. 8(2), 133–153 (2003)

    Article  Google Scholar 

  62. Luettmer-Strathmann, J.: Two-chamber lattice model for thermodiffusion in polymer solutions. J. Chem. Phys. 119(5), 2892–2902 (2003)

    Article  Google Scholar 

  63. Zhang, M., Mueller-Plathe, F.: The Soret effect in dilute polymer solutions: Influence of chain length, chain stiffness, and solvent quality. J. Chem. Phys. 125(12), 124903 (2006)

    Article  Google Scholar 

  64. Ruckenstein, E.: Can phoretic motions be treated as interfacial tension gradient driven phenomena? J. Coll. Interface Sci. 83(1), 77–81 (1981)

    Article  Google Scholar 

  65. Andreev, A.F.: Thermophoresis in liquids. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 94(1), 210–216 (1988)

    Google Scholar 

  66. Semenov, S., Schimpf, M.: Thermophoresis of dissolved molecules and polymers: consideration of the temperature-induced macroscopic pressure gradient. Phys. Rev. E 69, 011201 (2004)

  67. Piazza, v., Guarino, A.: Soret effect in interacting micellar solutions. Phys. Rev. Lett. 88(20), 208302 (2002)

  68. Bringuier, E., Bourdon, A.: Colloid transport in nonuniform temperature. Phys. Rev. E 67(1, Part 1), 011404 (2003)

  69. Rasuli, S.N., Golestanian, R.: Thermophoresis for a single charged colloidal particle. J. Phys.: Condens. Matter 17(14, SI), S1171–S1176 (2005)

  70. Anderson, J.L.: Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 61–99 (1989)

    Article  Google Scholar 

  71. Macgowan, D., Evans, D.J.: Heat and matter transport in binary-liquid mixtures. Phys. Rev. A 34(3), 2133–2142 (1986)

    Article  Google Scholar 

  72. Simon, J.-M., Dysthe, D.K., Fuchs, A.H., Rousseau, B.: Thermal diffusion in alkane binary mixtures: A molecular dynamics approach. Fluid Phase Equilib. 150151, 151–159 (1998)

    Article  Google Scholar 

  73. Reith, D., Muller-Plathe, F.: On the nature of thermal diffusion in binary Lennard-Jones liquids. J. Chem. Phys. 112(5), 2436–2443 (2000)

  74. Vogelsang, R., Hoheisel, C., Paolini, G.V., Ciccotti, G.: Soret coefficient of isotopic Lennard-Jones mixtures and the ar-kr system as determined by equilibrium molecular-dynamics calculations. Phys. Rev. A 36(8), 3964–3974 (1987)

    Article  Google Scholar 

  75. Artola, P.-A., Rousseau, B.: Microscopic interpretation of a pure chemical contribution to the Soret effect. Phys. Rev. Lett. 98(12), 125901 (2007)

    Article  Google Scholar 

  76. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  Google Scholar 

  77. Hafskjold, B., Ikeshoji, T., Ratkje, S.K.: On the molecular mechanism of thermal diffusion in liquids. Mol. Phys. 80(6), 1389–1412 (1993)

    Article  Google Scholar 

  78. Ikeshoji, T., Hafskjold, B.: Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol. Phys. 81(2), 251–261 (1994)

    Article  Google Scholar 

  79. Bresme, F., Armstrong, J.: Note: local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations. J. Chem. Phys. 140(1), 016102 (2014)

  80. Römer, F., Wang, Z., Wiegand, S., Bresme, F.: Alkali halide solutions under thermal gradients: Soret coefficients and heat transfer mechanisms. J. Phys. Chem. B 117(27), 8209–8222 (2013)

    Article  Google Scholar 

  81. Römer, F., Bresme, F.: Heat conduction and thermomolecular orientation in diatomic fluids: a non-equilibrium molecular dynamics study. Mol. Sim. 38(14–15), 1198–1208 (2012)

    Article  Google Scholar 

  82. Armstrong, J., Bresme, F.: Water polarization induced by thermal gradients: the extended simple point charge model (SPC/E). J. Chem. Phys. 139(1), 014504 (2013)

    Article  Google Scholar 

  83. Foloppe, N., MacKerrell Jr, A.D.: All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104 (2000)

    Article  Google Scholar 

  84. Yoo, J., Aksimentiev, A.: Improved parametrization of Li\(^+\), Na\(^+\), K\(^+\), and Mg\(^{2+}\) ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett. 3(1), 45–50 (2012)

    Article  Google Scholar 

  85. Miyamoto, S., Kollman, P.A.: SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water molecules. J. Comput. Chem. 13(8), 952–962 (1992)

    Article  Google Scholar 

  86. Andersen, H.C.: RATTLE: a “velocity” version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52(1), 24–34 (1983)

    Article  MATH  Google Scholar 

  87. Skeel, R.D., Hardy, D.J., Phillips, J.C.: Correcting mesh-based force calculations to conserve both energy and momentum in molecular dynamics simulations. J. Comput. Phys. 225(1), 1–5 (2007)

  88. Batcho, P.F., Case, D.A., Schlick, T.: Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J. Chem. Phys. 115(9), 4003–4018 (2001)

  89. Wells, D.B., Abramkina, V., Aksimentiev, A.: Exploring transmembrane transport through \(\alpha \)-hemolysin with grid-steered molecular dynamics. J. Chem. Phys. 127, 125101 (2007)

  90. Koopman, E.A., Lowe, C.P.: Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J. Chem. Phys. 124, 204103 (2006)

    Article  Google Scholar 

  91. Joung, I.S., Cheatham, T.E.: Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112(30), 9020–9041 (2008)

    Article  Google Scholar 

  92. Hart, K., Foloppe, N., Baker, C.M., Denning, E.J., Nilsson, L., MacKerell, A.D.: Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 8(1), 348–362 (2012)

    Article  Google Scholar 

  93. van Dijk, M., Bonvin, A.M.J.J.: 3D-DART: a DNA structure modelling server. Nucleic Acids Res. 37, W235–W239 (2009)

    Article  Google Scholar 

  94. Humphrey, W., Dalke, A., Schulten, K.: VMD–visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996)

    Article  Google Scholar 

  95. Maffeo, C., Ngo, T.T.M., Ha, T., Aksimentiev, A.: A coarse-grained model of unstructured single-stranded DNA derived from atomistic simulation and single-molecule experiment. J. Chem. Theory Comput. (2014). doi:10.1021/ct500193u

  96. Pryor, R.W.: Multiphysics Modeling Using COMSOL 4: A First Principles Approach. Mercury Learning Series. Mercury Learning and Information, Dulles, VA (2012)

Download references

Acknowledgments

This work was supported by the Grants from the National Science Foundation (DMR-0955959) and the National Institutes of Health (R01-HG007406 and P41-RR005969).The authors gladly acknowledge supercomputer time provided through XSEDE Allocation Grant MCA05S028 and the Blue Waters petascale supercomputer system (UIUC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei Aksimentiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkin, M., Chao, SH., Giannetti, G. et al. Modeling thermophoretic effects in solid-state nanopores. J Comput Electron 13, 826–838 (2014). https://doi.org/10.1007/s10825-014-0594-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0594-8

Keywords

Navigation