Skip to main content
Log in

Initial studies on the direct and modulatory effects of nitric oxide on an identified central Helix aspersa neuron

  • Short Communication
  • Published:
Invertebrate Neuroscience

Abstract

The generation of the novel messenger molecule nitric oxide (NO) has been demonstrated in many tissues across phyla including nervous systems. It is produced on demand by the enzyme nitric oxide synthase often stimulated by intracellular calcium and typically affecting guanylate cyclase thought to be its principal target in an auto and/or paracrine fashion. This results in the generation of the secondary messenger cyclic guanosine monophosphate (cGMP). Nitric oxide synthase has been demonstrated in various mollusk brains and manipulation of NO levels has been shown to affect behavior in mollusks. Apart from modulation of the effect of the peptide GSPYFVamide, there appears little published on direct or modulatory effects of NO on Helix aspersa central neurons. We present here initial results to show that NO can be generated in the region around F1 in the right parietal ganglion and that NO and cGMP directly hyperpolarize this neuron. For example, application of the NO-donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP; 200 µM) can cause a mean hyperpolarization of 41.7 mV, while 2 mM 8-bromo-cyclic guanosine monophosphate (8-bromo-cGMP) produced a mean hyperpolarization of 33.4 mV. Additionally, pre-exposure to NO-donors or cGMP appears to significantly reduce or even eliminates the normal hyperpolarizing K+-mediated response to dopamine (DA) by this neuron; 200 µM SNAP abolishes a standard response to 0.5 µM DA while 1 mM 8-bromo-cGMP reduces it 62 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Bicker G (1998) NO news from insect brains. Trends Neurosci 21:349–355

    Article  CAS  PubMed  Google Scholar 

  • Bokisch AJ, Walker RJ (1986) The ionic mechanism associated with the action of putative transmitters on identified neurons of the snail Helix aspersa. Comp Biochem Physiol 84C:231–241

    CAS  Google Scholar 

  • Bredt DS, Snyder SH (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86:9030–9033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Article  CAS  PubMed  Google Scholar 

  • Cooke IRC, Edwards SL, Anderson CR (1994) The distribution of NADPH diaphorase activity and immunoreactivity to nitric oxide synthase in the nervous system of the pulmonate mollusk Helix aspersa. Cell Tissue Res 277:565–572

    Article  CAS  Google Scholar 

  • Crepel F, Jaillard D (1990) Protein kinases, nitric oxide, and long-term depression of synapses in the cerebellum. NeuroReport 1:133–136

    Article  CAS  PubMed  Google Scholar 

  • D’yakonova TL (2000) NO-producing compounds transform neuron responses to glutamate. Neurosci Behav Physiol 30(2):153–159

    Article  PubMed  Google Scholar 

  • D’yakonova TL (2002) Interaction between serotonin and nitric oxide (NO) in the activation of the serotoninergic system in the common snail. Neurosci Behav Physiol 32(3):275–282

    Article  PubMed  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in the brain. Nature 336:383–387

    Article  Google Scholar 

  • Huang S, Kerschbaum HH, Engel E, Hermann A (1997) Biochemical characterization and histochemical localization of nitric oxide synthase in the nervous system of the snail Helix pomatia. J Neurochem 69:2516–2528

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Kerschbaum HH, Hermann A (1998) Nitric oxide-mediated cGMP synthesis in Helix neural ganglia. Brain Res 780:329–336

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaufmann W, Kerschbaum HH, Hauser-Kronberger C, Hacker GW, Hermann A (1995) Distribution of seasonal variation of vasoactive intestinal (VIP)-like peptides in the nervous system of Helix pomatia. Brain Res 695:125–136

    Article  CAS  PubMed  Google Scholar 

  • Kerkut GA, Meech RW (1966) The internal chloride concentration of H and D cells in the snail brain. Comp Biochem Physiol 19:819–832

    Article  CAS  Google Scholar 

  • Kerkut GA, Lambert JDC, Gayton RJ, Loker JE, Walker RJ (1975) Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comp Biochem Physiol 50A:1–25

    Article  Google Scholar 

  • Korshunova TA, Balaban PM (2014) Nitric oxide is necessary for long-term facilitation of synaptic responses and for development of context memory in terrestrial snails. Neuroscience 266:127–135

    Article  CAS  PubMed  Google Scholar 

  • Kostyuk PG (1968) Ionic background of activity in giant neurons of molluscs. In: Salanki J (ed) Neurobiology of invertebrates. Plenum Press, New York, pp 145–167

    Chapter  Google Scholar 

  • Malyshev AY, Balaban PM (1999) Synaptic facilitation in Helix neurons depends upon postsynaptic calcium and nitric oxide. Neurosci Lett 261:65–68

    Article  CAS  PubMed  Google Scholar 

  • Moroz LL, Gillette R (1996) From Polyplacophora to Cephalopoda: comparative analysis of nitric oxide signalling in mollusca. Acta Biol Hung 46:169–182

    Google Scholar 

  • Moroz LL, Gillette R, Sweedler JV (1999) Single-cell analyses of nitrergic neurons in simpler nervous systems. J Exp Biol 202:333–341

    CAS  PubMed  Google Scholar 

  • Neild TO, Thomas RC (1974) Intracellular chloride ion activity and the effects of acetylcholine in snail neurons. J Physiol 242:453–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Straub VA, O’Shea M (1998) Anterograde signaling by nitric oxide: characterization and in vitro reconstitution of an identified nitrergic synapse. J Neurosci 18(14):5463–5476

    CAS  PubMed  Google Scholar 

  • Pedder SM, Muneoka Y, Walker RJ (1998) Evidence for the involvement of nitric oxide in the inhibitory effect of GSPYFVamide on Helix aspersa central neurons. Regul Pept 74:121–127

    Article  CAS  PubMed  Google Scholar 

  • Pisu MB, Conforti E, Fenoglio C, Necchi D, Scherini E, Bernocchi G (1999) Nitric oxide-containing neurons in the nervous ganglia of Helix aspersa during rest and activity: immunocytochemical and enzyme histochemical detection. J Comp Neurol 409:274–284

    Article  CAS  PubMed  Google Scholar 

  • Roszer T, Kiss-Toth E, Rozsa D, Jozsa T, Szentmiklosi AJ, Banfalvi G (2010) Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons. Cell Tissue Res 342:191–203

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Alvarez M, Leon-Olea M, Talavera E, Pellicer F, Sanchez-Islas E, Martinez-Lorenzana G (1994) Distribution of NADPH-diaphorase in the perioesophageal ganglia of the snail, Helix aspersa. Neurosci Lett 169:51–55

    Article  CAS  PubMed  Google Scholar 

  • Sawada M, Ichinose M, Stefano GB (1997) Nitric oxide inhibits the dopamine-induced K+ current via guanylate cyclase in Aplysia neurons. J Neurosci Res 50:450–456

    Article  CAS  PubMed  Google Scholar 

  • Schrofner S, Zsombok A, Hermann A, Kerschbaum HH (2004) Nitric oxide decreases a calcium-activated potassium current via activation of phosphodiesterase 2 in Helix U-cells. Brain Res 999(1):98–105

    Article  CAS  PubMed  Google Scholar 

  • Straub VA, Grant J, O’Shea M, Benjamin PR (2007) Modulation of serotonergic neurotransmission by nitric oxide. J Neurophysiol 97:1088–1099

    Article  CAS  PubMed  Google Scholar 

  • Teyke T (1996) Nitric oxide, but not serotonin, is involved in acquisition of food-attraction conditioning in the snail Helix pomatia. Neurosci Lett 206:29–32

    Article  CAS  PubMed  Google Scholar 

  • Walker RJ (1968) Intracellular microelectrode recording from the brain of Helix. Exp Physiol Biochem 1:342–345

    Google Scholar 

  • Walker RJ, Bascal Z, White AR, Pedder S, Franks CJ, Muneoka Y, Holden-Dye L (1995) Actions of neuroactive peptides and nitric oxide on Ascaris, Achatina and Helix tissues. Acta Biol Hung 46(2–4):183–193

    CAS  PubMed  Google Scholar 

  • Zsombok A, Schrofner S, Hermann A, Kerschbaum HH (2000) Nitric oxide increases excitability by depressing a calcium activated potassium current in snail neurons. Neurosci Lett 295(3):85–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Vanessa Wright for her help in editing and preparation of graphics.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. D. Wright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, N.J.D., Sides, L.J. & Walling, K. Initial studies on the direct and modulatory effects of nitric oxide on an identified central Helix aspersa neuron. Invert Neurosci 15, 175 (2015). https://doi.org/10.1007/s10158-014-0175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-014-0175-3

Keywords

Navigation