1932

Abstract

Bacteriophages (phages) specifically infect bacteria and are the most abundant biological entities on Earth. The constant exposure to phage infection imposes a strong selective pressure on bacteria to develop viral resistance strategies that promote prokaryotic survival. Thus, this parasite-host relationship results in an evolutionary arms race of adaptation and counteradaptation between the interacting partners. The evolutionary outcome is a spectrum of remarkable strategies used by the bacteria and phages as they attempt to coexist. These approaches include adsorption inhibition, injection blocking, abortive infection, toxin-antitoxin, and CRISPR-Cas systems. In this review, we highlight the diverse and complementary antiphage systems in bacteria, as well as the evasion mechanisms used by phages to escape these resistance strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-031413-085500
2014-09-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/1/1/annurev-virology-031413-085500.html?itemId=/content/journals/10.1146/annurev-virology-031413-085500&mimeType=html&fmt=ahah

Literature Cited

  1. Summers WC. 1.  2011. In the beginning. Bacteriophage 1:50–51 [Google Scholar]
  2. Chanishvili N. 2.  2012. Phage therapy—history from Twort and d'Herelle through Soviet experience to current approaches. Adv. Virus Res. 83:3–40 [Google Scholar]
  3. Kutter E, Sulakvelidze A. 3.  2005. Bacteriophages: Biology and Applications Boca Raton, FL: CRC
  4. Petty NK, Evans TJ, Fineran PC, Salmond GP. 4.  2007. Biotechnological exploitation of bacteriophage research. Trends Biotechnol. 25:7–15 [Google Scholar]
  5. Faust K, Raes J. 5.  2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10:538–50 [Google Scholar]
  6. Valen L. 6.  Van 1974. Molecular evolution as predicted by natural selection. J. Mol. Evol. 3:89–101 [Google Scholar]
  7. Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ. 7.  et al. 2010. Antagonistic coevolution accelerates molecular evolution. Nature 464:275–78 [Google Scholar]
  8. Wommack KE, Colwell RR. 8.  2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64:69–114 [Google Scholar]
  9. Fuhrman JA. 9.  1999. Marine viruses and their biogeochemical and ecological effects. Nature 399:541–48 [Google Scholar]
  10. Weinbauer MG. 10.  2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28:127–81 [Google Scholar]
  11. Brüssow H, Canchaya C, Hardt WD. 11.  2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560–602 [Google Scholar]
  12. Labrie SJ, Samson JE, Moineau S. 12.  2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:317–27 [Google Scholar]
  13. Samson JE, Magadan AH, Sabri M, Moineau S. 13.  2013. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11:675–87 [Google Scholar]
  14. Kostyuchenko VA, Leiman PG, Chipman PR, Kanamaru S, van Raaij MJ. 14.  et al. 2003. Three-dimensional structure of bacteriophage T4 baseplate. Nat. Struct. Biol. 10:688–93 [Google Scholar]
  15. Riede I, Eschbach ML. 15.  1986. Evidence that TraT interacts with OmpA of Escherichia coli. FEBS Lett. 205:241–45 [Google Scholar]
  16. Achtman M, Kennedy N, Skurray R. 16.  1977. Cell-cell interactions in conjugating Escherichia coli: role of traT protein in surface exclusion. Proc. Natl. Acad. Sci. USA 74:5104–8 [Google Scholar]
  17. Koebnik R. 17.  1999. Structural and functional roles of the surface-exposed loops of the β-barrel membrane protein OmpA from Escherichia coli. J. Bacteriol. 181:3688–94 [Google Scholar]
  18. Hynes WL, Hancock L, Ferretti JJ. 18.  1995. Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity. Infect. Immun. 63:3015–20 [Google Scholar]
  19. Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ. 19.  2001. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 67:2746–53 [Google Scholar]
  20. Forde A, Fitzgerald GF. 20.  2003. Molecular organization of exopolysaccharide (EPS) encoding genes on the lactococcal bacteriophage adsorption blocking plasmid, pCI658. Plasmid 49:130–42 [Google Scholar]
  21. Destoumieux-Garzon D, Duquesne S, Peduzzi J, Goulard C, Desmadril M. 21.  et al. 2005. The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 β-hairpin region in the recognition mechanism. Biochem. J. 389:869–76 [Google Scholar]
  22. Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE. 22.  2012. Repeatability and contingency in the evolution of a key innovation in phage λ. Science 335:428–32 [Google Scholar]
  23. Raetz CRH. 23.  1990. Biochemistry of endotoxins. Annu. Rev. Biochem. 59:129–70 [Google Scholar]
  24. Qimron U, Marintcheva B, Tabor S, Richardson CC. 24.  2006. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc. Natl. Acad. Sci. USA 103:19039–44 [Google Scholar]
  25. Hu B, Margolin W, Molineux IJ, Liu J. 25.  2013. The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science 339:576–79 [Google Scholar]
  26. Sutherland IW. 26.  1995. Polysaccharide lyases. FEMS Microbiol. Rev. 16:323–47 [Google Scholar]
  27. Baker JR, Dong S, Pritchard DG. 27.  2002. The hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A. Biochem. J. 365:317–22 [Google Scholar]
  28. Bessler W, Freund-Mölbert E, Knüfermann H, Rudolph C, Thurow H, Stirm S. 28.  1973. A bacteriophage-induced depolymerase active on Klebsiella K11 capsular polysaccharide. Virology 56:134–51 [Google Scholar]
  29. Glonti T, Chanishvili N, Taylor PW. 29.  2010. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J. Appl. Microbiol. 108:695–702 [Google Scholar]
  30. Hoskisson PA, Smith MC. 30.  2007. Hypervariation and phase variation in the bacteriophage “resistome.” Curr. Opin. Microbiol. 10:396–400 [Google Scholar]
  31. Veening JW, Smits WK, Kuipers OP. 31.  2008. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62:193–210 [Google Scholar]
  32. Decker KB, James TD, Stibitz S, Hinton DM. 32.  2012. The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA. Microbiology 158:1665–76 [Google Scholar]
  33. Stibitz S, Aaronson W, Monack D, Falkow S. 33.  1989. Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature 338:266–69 [Google Scholar]
  34. Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA. 34.  et al. 2002. Reverse transcriptase–mediated tropism switching in Bordetella bacteriophage. Science 295:2091–94 [Google Scholar]
  35. Medhekar B, Miller JF. 35.  2007. Diversity-generating retroelements. Curr. Opin. Microbiol. 10:388–95 [Google Scholar]
  36. Doulatov S, Hodes A, Dai L, Mandhana N, Liu M. 36.  et al. 2004. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476–81Phages can switch hosts by generating genetic diversity through retroelement-based, site-directed, adenine-specific mutagenesis. [Google Scholar]
  37. Arambula D, Wong W, Medhekar BA, Guo H, Gingery M. 37.  et al. 2013. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc. Natl. Acad. Sci. USA 110:8212–17 [Google Scholar]
  38. Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. 38.  2012. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog. 8:e1002917 [Google Scholar]
  39. Kim M, Ryu S. 39.  2012. Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 86:411–25 [Google Scholar]
  40. Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV. 40.  et al. 2002. Structure of the cell-puncturing device of bacteriophage T4. Nature 415:553–57 [Google Scholar]
  41. Mosig G, Lin GW, Franklin J, Fan WH. 41.  1989. Functional relationships and structural determinants of two bacteriophage T4 lysozymes: a soluble (gene e) and a baseplate-associated (gene 5) protein. New Biol. 1:171–79 [Google Scholar]
  42. Moak M, Molineux IJ. 42.  2004. Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol. Microbiol. 51:1169–83 [Google Scholar]
  43. Lu MJ, Henning U. 43.  1994. Superinfection exclusion by T-even-type coliphages. Trends Microbiol. 2:137–39 [Google Scholar]
  44. Mahony J, McGrath S, Fitzgerald GF, van Sinderen D. 44.  2008. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl. Environ. Microbiol. 74:6206–15 [Google Scholar]
  45. Sun X, Gohler A, Heller KJ, Neve H. 45.  2006. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology 350:146–57 [Google Scholar]
  46. Bebeacua C, Lorenzo Fajardo JC, Blangy S, Spinelli S, Bollmann S. 46.  et al. 2013. X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target. Mol. Microbiol. 89:152–65 [Google Scholar]
  47. Tock MR, Dryden DT. 47.  2005. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8:466–72 [Google Scholar]
  48. O'Sullivan D, Twomey DP, Coffey A, Hill C, Fitzgerald GF, Ross RP. 48.  2000. Novel Type I restriction specificities through domain shuffling of HsdS subunits in Lactococcus lactis. Mol. Microbiol. 36:866–75 [Google Scholar]
  49. McGrath S, Seegers JF, Fitzgerald GF, van Sinderen D. 49.  1999. Molecular characterization of a phage-encoded resistance system in Lactococcus lactis. Appl. Environ. Microbiol. 65:1891–99 [Google Scholar]
  50. Walkinshaw MD, Taylor P, Sturrock SS, Atanasiu C, Berge T. 50.  et al. 2002. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol. Cell 9:187–94 [Google Scholar]
  51. Bandyopadhyay PK, Studier FW, Hamilton DL, Yuan R. 51.  1985. Inhibition of the Type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7. J. Mol. Biol. 182:567–78 [Google Scholar]
  52. Stewart FJ, Panne D, Bickle TA, Raleigh EA. 52.  2000. Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J. Mol. Biol. 298:611–22 [Google Scholar]
  53. Sutherland E, Coe L, Raleigh EA. 53.  1992. McrBC: a multisubunit GTP-dependent restriction endonuclease. J. Mol. Biol. 225:327–48 [Google Scholar]
  54. Janosi L, Yonemitsu H, Hong H, Kaji A. 54.  1994. Molecular cloning and expression of a novel hydroxymethylcytosine-specific restriction enzyme (PvuRts1I) modulated by glucosylation of DNA. J. Mol. Biol. 242:45–61 [Google Scholar]
  55. Chinenova TA, Mkrtumian NM, Lomovskaia ND. 55.  1982. Genetic characteristics of a new phage resistance trait in Streptomyces coelicolor A3(2). Genetika 18:1945–52 (in Russian) [Google Scholar]
  56. Sumby P, Smith MC. 56.  2003. Phase variation in the phage growth limitation system of Streptomyces coelicolor A3(2). J. Bacteriol. 185:4558–63 [Google Scholar]
  57. Sumby P, Smith MC. 57.  2002. Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2). Mol. Microbiol. 44:489–500 [Google Scholar]
  58. Laity C, Chater KF, Lewis CG, Buttner MJ. 58.  1993. Genetic analysis of the ϕC31-specific phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2). Mol. Microbiol. 7:329–36 [Google Scholar]
  59. Makarova KS, Wolf YI, van der Oost J, Koonin EV. 59.  2009. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct. 4:29 [Google Scholar]
  60. Swarts DC, Jore MM, Westra ER, Zhu YF, Janssen JH. 60.  et al. 2014. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507258–61Bacterial Argonaute provides DNA-guided protection by targeting and degrading the DNA of mobile elements.
  61. Sheng G, Zhao H, Wang J, Rao Y, Tian W. 61.  et al. 2014. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand–mediated DNA target cleavage. Proc. Natl. Acad. Sci. USA 111:652–57 [Google Scholar]
  62. Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. 62.  2013. Bacterial Argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 51:594–605 [Google Scholar]
  63. Richter C, Chang JT, Fineran PC. 63.  2012. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses 4:2291–311 [Google Scholar]
  64. Sorek R, Lawrence CM, Wiedenheft B. 64.  2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82:237–66 [Google Scholar]
  65. Terns MP, Terns RM. 65.  2011. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14:321–27 [Google Scholar]
  66. Westra ER, Swarts DC, Staals RHJ, Jore MM, Brouns SJJ, van der Oost J. 66.  2012. The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 46:311–39 [Google Scholar]
  67. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E. 67.  et al. 2011. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9:467–77 [Google Scholar]
  68. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. 68.  2012. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3:945 [Google Scholar]
  69. Yosef I, Goren MG, Qimron U. 69.  2012. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40:5569–76 [Google Scholar]
  70. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR. 70.  et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139:945–56 [Google Scholar]
  71. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P. 71.  et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12First demonstration of the phage resistance activity of CRISPR-Cas systems. [Google Scholar]
  72. Fineran PC, Charpentier E. 72.  2012. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 434:202–9 [Google Scholar]
  73. Andersson AF, Banfield JF. 73.  2008. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:1047–50 [Google Scholar]
  74. Pride DT, Sun CL, Salzman J, Rao N, Loomer P. 74.  et al. 2011. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res. 21:126–36 [Google Scholar]
  75. Diez-Villasenor C, Guzman NM, Almendros C, Garcia-Martinez J, Mojica FJ. 75.  2013. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol. 10:792–802 [Google Scholar]
  76. Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C. 76.  et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:1390–400 [Google Scholar]
  77. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. 77.  2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–40 [Google Scholar]
  78. Swarts DC, Mosterd C, van Passel MWJ, Brouns SJJ. 78.  2012. CRISPR interference directs strand specific spacer acquisition. PLoS ONE 7:e35888 [Google Scholar]
  79. Yosef I, Shitrit D, Goren MG, Burstein D, Pupko T, Qimron U. 79.  2013. DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array. Proc. Natl. Acad. Sci. USA 110:14396–401 [Google Scholar]
  80. Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T. 80.  et al. 2013. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9:e1003454 [Google Scholar]
  81. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH. 81.  et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–64 [Google Scholar]
  82. Carte J, Wang R, Li H, Terns RM, Terns MP. 82.  2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22:3489–96 [Google Scholar]
  83. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 83.  2010. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–58 [Google Scholar]
  84. Przybilski R, Richter C, Gristwood T, Clulow JS, Vercoe RB, Fineran PC. 84.  2011. Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum. RNA Biol. 8:517–28 [Google Scholar]
  85. Biswas A, Gagnon JN, Brouns SJJ, Fineran PC, Brown CM. 85.  2013. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 10:817–27 [Google Scholar]
  86. Marraffini LA, Sontheimer EJ. 86.  2010. Self versus non-self discrimination during CRISPR RNA–directed immunity. Nature 463:568–71 [Google Scholar]
  87. Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B. 87.  et al. 2013. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing–independent PAM recognition. PLoS Genet. 9:e1003742 [Google Scholar]
  88. Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJJ. 88.  et al. 2011. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–89 [Google Scholar]
  89. Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K. 89.  et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl. Acad. Sci. USA 108:10092–97 [Google Scholar]
  90. Nam KH, Haitjema C, Liu X, Ding F, Wang H. 90.  et al. 2012. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20:1574–84 [Google Scholar]
  91. Richter C, Gristwood T, Clulow JS, Fineran PC. 91.  2012. In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas system. PLoS ONE 7:e49549 [Google Scholar]
  92. Spilman M, Cocozaki A, Hale C, Shao Y, Ramia N. 92.  et al. 2013. Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol. Cell 52:146–52 [Google Scholar]
  93. Staals RHJ, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW. 93.  et al. 2013. Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol. Cell 52:135–45 [Google Scholar]
  94. Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V. 94.  et al. 2013. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol. Cell 52:124–34 [Google Scholar]
  95. Hatoum-Aslan A, Maniv I, Marraffini LA. 95.  2011. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc. Natl. Acad. Sci. USA 108:21218–22 [Google Scholar]
  96. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y. 96.  et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–7 [Google Scholar]
  97. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R. 97.  et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71 [Google Scholar]
  98. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 98.  2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21 [Google Scholar]
  99. Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER. 99.  et al. 2011. Structural basis for CRISPR RNA–guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18:529–36 [Google Scholar]
  100. Reeks J, Naismith JH, White MF. 100.  2013. CRISPR interference: a structural perspective. Biochem. J. 453:155–66 [Google Scholar]
  101. Sashital DG, Wiedenheft B, Doudna JA. 101.  2012. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46:606–15 [Google Scholar]
  102. Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER. 102.  et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108:10098–103 [Google Scholar]
  103. Westra ER, van Erp PBG, Künne T, Wong SP, Staals RHJ. 103.  et al. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46:595–605 [Google Scholar]
  104. Li M, Wang R, Zhao D, Xiang H. 104.  2014. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res. 42:2483–92 [Google Scholar]
  105. Richter C, Dy RL, McKenzie RE, Watson BNJ, Taylor C. 104a.  et al. 2014. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. In press. doi: 10.1093/nar/gku527
  106. Fineran PC, Gerritzen MJH, Suárez-Diez M, Künne T, Boekhorst J. 105.  et al. 2014. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc. Natl. Acad. Sci. USA 111:E1629–38
  107. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. 106.  2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–32Phage-encoded small anti-CRISPR proteins interfere with CRISPR-Cas systems to enable viral infection and replication. [Google Scholar]
  108. Skennerton CT, Angly FE, Breitbart M, Bragg L, He S. 107.  et al. 2011. Phage encoded H-NS: a potential Achilles heel in the bacterial defence system. PLoS ONE 6:e20095 [Google Scholar]
  109. Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R. 108.  2010. Identification and characterization of E. coli CRISPR-Cas promoters and their silencing by H-NS. Mol. Microbiol. 75:1495–512 [Google Scholar]
  110. Westra ER, Pul U, Heidrich N, Jore MM, Lundgren M. 109.  et al. 2010. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol. Microbiol. 77:1380–93 [Google Scholar]
  111. Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N. 110.  et al. 2006. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38:779–86 [Google Scholar]
  112. Seed KD, Lazinski DW, Calderwood SB, Camilli A. 111.  2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–91Phage-encoded active CRISPR-Cas systems can provide protection against host-encoded phage resistance systems. [Google Scholar]
  113. Fukuyo M, Sasaki A, Kobayashi I. 112.  2012. Success of a suicidal defense strategy against infection in a structured habitat. Sci. Rep. 2:238 [Google Scholar]
  114. Snyder L, McWilliams K. 113.  1989. The rex genes of bacteriophage λ can inhibit cell function without phage superinfection. Gene 81:17–24 [Google Scholar]
  115. Landsmann J, Kroger M, Hobom G. 114.  1982. The rex region of bacteriophage λ: two genes under three-way control. Gene 20:11–24 [Google Scholar]
  116. Shinedling S, Parma D, Gold L. 115.  1987. Wild-type bacteriophage T4 is restricted by the λ rex genes. J. Virol. 61:3790–94 [Google Scholar]
  117. Parma DH, Snyder M, Sobolevski S, Nawroz M, Brody E, Gold L. 116.  1992. The Rex system of bacteriophage λ: tolerance and altruistic cell death. Genes Dev. 6:497–510 [Google Scholar]
  118. Friedman DI, Mozola CC, Beeri K, Ko CC, Reynolds JL. 117.  2011. Activation of a prophage-encoded tyrosine kinase by a heterologous infecting phage results in a self-inflicted abortive infection. Mol. Microbiol. 82:567–77 [Google Scholar]
  119. Cheng X, Wang W, Molineux IJ. 118.  2004. F exclusion of bacteriophage T7 occurs at the cell membrane. Virology 326:340–52 [Google Scholar]
  120. Schmitt CK, Molineux IJ. 119.  1991. Expression of gene 1.2 and gene 10 of bacteriophage T7 is lethal to F plasmid–containing Escherichia coli. J. Bacteriol. 173:1536–43 [Google Scholar]
  121. Molineux IJ, Schmitt CK, Condreay JP. 120.  1989. Mutants of bacteriophage T7 that escape F restriction. J. Mol. Biol. 207:563–74 [Google Scholar]
  122. Schmitt CK, Kemp P, Molineux IJ. 121.  1991. Genes 1.2 and 10 of bacteriophages T3 and T7 determine the permeability lesions observed in infected cells of Escherichia coli expressing the F plasmid gene pifA. J. Bacteriol. 173:6507–14 [Google Scholar]
  123. Kao C, Snyder L. 122.  1988. The lit gene product which blocks bacteriophage T4 late gene expression is a membrane protein encoded by a cryptic DNA element, e14. J. Bacteriol. 170:2056–62 [Google Scholar]
  124. Georgiou T, Yu YN, Ekunwe S, Buttner MJ, Zuurmond A. 123.  et al. 1998. Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu. Proc. Natl. Acad. Sci. USA 95:2891–95 [Google Scholar]
  125. Yu YT, Snyder L. 124.  1994. Translation elongation factor Tu cleaved by a phage-exclusion system. Proc. Natl. Acad. Sci. USA 91:802–6 [Google Scholar]
  126. Bingham R, Ekunwe SI, Falk S, Snyder L, Kleanthous C. 125.  2000. The major head protein of bacteriophage T4 binds specifically to elongation factor Tu. J. Biol. Chem. 275:23219–26 [Google Scholar]
  127. Depew RE, Cozzarelli NR. 126.  1974. Genetics and physiology of bacteriophage T4 3′-phosphatase: evidence for involvement of the enzyme in T4 DNA metabolism. J. Virol. 13:888–97 [Google Scholar]
  128. Kaufmann G, David M, Borasio GD, Teichmann A, Paz A, Amitsur M. 127.  1986. Phage and host genetic determinants of the specific anticodon loop cleavages in bacteriophage T4–infected Escherichia coli CTr5X. J. Mol. Biol. 188:15–22 [Google Scholar]
  129. Levitz R, Chapman D, Amitsur M, Green R, Snyder L, Kaufmann G. 128.  1990. The optional E. coli prr locus encodes a latent form of phage T4–induced anticodon nuclease. EMBO J. 9:1383–89 [Google Scholar]
  130. Amitsur M, Morad I, Chapman-Shimshoni D, Kaufmann G. 129.  1992. HSD restriction-modification proteins partake in latent anticodon nuclease. EMBO J. 11:3129–34 [Google Scholar]
  131. Snyder L. 130.  1995. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents?. Mol. Microbiol. 15:415–20 [Google Scholar]
  132. Chapman D, Morad I, Kaufmann G, Gait MJ, Jorissen L, Snyder L. 131.  1988. Nucleotide and deduced amino acid sequence of stp: the bacteriophage T4 anticodon nuclease gene. J. Mol. Biol. 199:373–77 [Google Scholar]
  133. Chopin MC, Chopin A, Bidnenko E. 132.  2005. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8:473–79 [Google Scholar]
  134. Anba J, Bidnenko E, Hillier A, Ehrlich D, Chopin MC. 133.  1995. Characterization of the lactococcal abiD1 gene coding for phage abortive infection. J. Bacteriol. 177:3818–23 [Google Scholar]
  135. Bidnenko E, Chopin A, Ehrlich SD, Chopin MC. 134.  2009. Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1. BMC Mol. Biol. 10:4 [Google Scholar]
  136. Bidnenko E, Chopin MC, Ehrlich SD, Anba J. 135.  2002. Lactococcus lactis AbiD1 abortive infection efficiency is drastically increased by a phage protein. FEMS Microbiol. Lett. 214:283–87 [Google Scholar]
  137. Bidnenko E, Ehrlich SD, Chopin MC. 136.  1998. Lactococcus lactis phage operon coding for an endonuclease homologous to RuvC. Mol. Microbiol. 28:823–34 [Google Scholar]
  138. Bidnenko E, Ehrlich D, Chopin MC. 137.  1995. Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1. J. Bacteriol. 177:3824–29 [Google Scholar]
  139. Emond E, Holler BJ, Boucher I, Vandenbergh PA, Vedamuthu ER. 138.  et al. 1997. Phenotypic and genetic characterization of the bacteriophage abortive infection mechanism AbiK from Lactococcus lactis. Appl. Environ. Microbiol. 63:1274–83 [Google Scholar]
  140. Fortier LC, Bouchard JD, Moineau S. 139.  2005. Expression and site-directed mutagenesis of the lactococcal abortive phage infection protein AbiK. J. Bacteriol. 187:3721–30 [Google Scholar]
  141. Wang C, Villion M, Semper C, Coros C, Moineau S, Zimmerly S. 140.  2011. A reverse transcriptase–related protein mediates phage resistance and polymerizes untemplated DNA in vitro. Nucleic Acids Res. 39:7620–29 [Google Scholar]
  142. Bouchard JD, Moineau S. 141.  2004. Lactococcal phage genes involved in sensitivity to AbiK and their relation to single-strand annealing proteins. J. Bacteriol. 186:3649–52 [Google Scholar]
  143. Scaltriti E, Launay H, Genois MM, Bron P, Rivetti C. 142.  et al. 2011. Lactococcal phage p2 ORF35-Sak3 is an ATPase involved in DNA recombination and AbiK mechanism. Mol. Microbiol. 80:102–16 [Google Scholar]
  144. Durmaz E, Klaenhammer TR. 143.  2007. Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. J. Bacteriol. 189:1417–25 [Google Scholar]
  145. Prevots F, Tolou S, Delpech B, Kaghad M, Daloyau M. 144.  1998. Nucleotide sequence and analysis of the new chromosomal abortive infection gene abiN of Lactococcus lactis subsp. cremoris S114. FEMS Microbiol. Lett. 159:331–36 [Google Scholar]
  146. Prevots F, Ritzenthaler P. 145.  1998. Complete sequence of the new lactococcal abortive phage resistance gene abiO. J. Dairy Sci. 81:1483–85 [Google Scholar]
  147. Dai G, Su P, Allison GE, Geller BL, Zhu P. 146.  et al. 2001. Molecular characterization of a new abortive infection system (AbiU) from Lactococcus lactis LL51-1. Appl. Environ. Microbiol. 67:5225–32 [Google Scholar]
  148. Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP. 147.  2009. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc. Natl. Acad. Sci. USA 106:894–99Demonstration that Abis can function via TA activity and discovery of Type III TA systems. [Google Scholar]
  149. Gerdes K, Christensen SK, Lobner-Olesen A. 148.  2005. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3:371–82 [Google Scholar]
  150. Schuster CF, Bertram R. 149.  2013. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol. Lett. 340:73–85 [Google Scholar]
  151. Gerdes K, Larsen JE, Molin S. 150.  1985. Stable inheritance of plasmid R1 requires two different loci. J. Bacteriol. 161:292–98 [Google Scholar]
  152. Ogura T, Hiraga S. 151.  1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. USA 80:4784–88 [Google Scholar]
  153. Kumar P, Issac B, Dodson EJ, Turkenburg JP, Mande SC. 152.  2008. Crystal structure of Mycobacterium tuberculosis YefM antitoxin reveals that it is not an intrinsically unstructured protein. J. Mol. Biol. 383:482–93 [Google Scholar]
  154. Christensen SK, Mikkelsen M, Pedersen K, Gerdes K. 153.  2001. RelE, a global inhibitor of translation, is activated during nutritional stress. Proc. Natl. Acad. Sci. USA 98:14328–33 [Google Scholar]
  155. Overgaard M, Borch J, Jorgensen MG, Gerdes K. 154.  2008. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol. Microbiol. 69:841–57 [Google Scholar]
  156. Dy RL, Przybilski R, Semeijn K, Salmond GP, Fineran PC. 155.  2014. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Res. 424590–605
  157. Amitai S, Yassin Y, Engelberg-Kulka H. 156.  2004. MazF-mediated cell death in Escherichia coli: a point of no return. J. Bacteriol. 186:8295–300 [Google Scholar]
  158. Cook GM, Robson JR, Frampton RA, McKenzie J, Przybilski R. 157.  et al. 2013. Ribonucleases in bacterial toxin-antitoxin systems. Biochim. Biophys. Acta 1829:523–31 [Google Scholar]
  159. Fozo EM, Hemm MR, Storz G. 158.  2008. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev. 72:579–89 [Google Scholar]
  160. Masuda H, Tan Q, Awano N, Wu KP, Inouye M. 159.  2012. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol. Microbiol. 84:979–89 [Google Scholar]
  161. Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH. 160.  et al. 2012. A new Type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8:855–61 [Google Scholar]
  162. Pecota DC, Wood TK. 161.  1996. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178:2044–50 [Google Scholar]
  163. Blower TR, Pei XY, Short FL, Fineran PC, Humphreys DP. 162.  et al. 2011. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat. Struct. Mol. Biol. 18:185–90 [Google Scholar]
  164. Blower TR, Fineran PC, Johnson MJ, Toth IK, Humphreys DP, Salmond GP. 163.  2009. Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia. J. Bacteriol. 191:6029–39 [Google Scholar]
  165. Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY. 164.  et al. 2012. Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res. 40:6158–73 [Google Scholar]
  166. Short FL, Pei XY, Blower TR, Ong SL, Fineran PC. 165.  et al. 2013. Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. Proc. Natl. Acad. Sci. USA 110:E241–49 [Google Scholar]
  167. Emond E, Dion E, Walker SA, Vedamuthu ER, Kondo JK, Moineau S. 166.  1998. AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl. Environ. Microbiol. 64:4748–56 [Google Scholar]
  168. Samson JE, Spinelli S, Cambillau C, Moineau S. 167.  2013. Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the Type III toxin-antitoxin system. Mol. Microbiol. 87:756–68 [Google Scholar]
  169. Blower TR, Evans TJ, Przybilski R, Fineran PC, Salmond GP. 168.  2012. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLoS Genet. 8:e1003023Phage avoidance of Abi/TA resistance by acquiring or evolving RNA molecular mimics of the toxin. [Google Scholar]
  170. Samson JE, Belanger M, Moineau S. 169.  2013. Effect of the abortive infection mechanism and Type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages. J. Bacteriol. 195:3947–56 [Google Scholar]
  171. Otsuka Y, Yonesaki T. 170.  2012. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83:669–81 [Google Scholar]
  172. Koga M, Otsuka Y, Lemire S, Yonesaki T. 171.  2011. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system. Genetics 187:123–30 [Google Scholar]
  173. Wei Y, Gao ZQ, Otsuka Y, Naka K, Yonesaki T. 172.  et al. 2013. Structure-function studies of Escherichia coli RnlA reveal a novel toxin structure involved in bacteriophage resistance. Mol. Microbiol. 90:956–65 [Google Scholar]
  174. Hazan R, Engelberg-Kulka H. 173.  2004. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol. Genet. Genomics 272:227–34 [Google Scholar]
  175. Guglielmini J, Szpirer C, Milinkovitch MC. 174.  2008. Automated discovery and phylogenetic analysis of new toxin-antitoxin systems. BMC Microbiol. 8:104 [Google Scholar]
  176. Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y. 175.  et al. 2013. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol. Cell 50:136–48 [Google Scholar]
  177. Garvey P, Fitzgerald GF, Hill C. 176.  1995. Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl. Environ. Microbiol. 61:4321–28 [Google Scholar]
  178. Erdmann S, Le Moine Bauer S, Garrett RA. 177.  2014. Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus. Mol. Microbiol. 91:900–17 [Google Scholar]
  179. Dupuis ME, Villion M, Magadan AH, Moineau S. 178.  2013. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat. Commun. 4:2087 [Google Scholar]
  180. Garvey P, Hill C, Fitzgerald GF. 179.  1996. The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. Appl. Environ. Microbiol. 62:676–79 [Google Scholar]
/content/journals/10.1146/annurev-virology-031413-085500
Loading
/content/journals/10.1146/annurev-virology-031413-085500
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error