1932

Abstract

, a Gram-positive bacterium colonizing nares, skin, and the gastrointestinal tract, frequently invades the skin, soft tissues, and bloodstreams of humans. Even with surgical and antibiotic therapy, bloodstream infections are associated with significant mortality. The secretion of coagulases, proteins that associate with and activate the host hemostatic factor prothrombin, and the bacterial surface display of agglutinins, proteins that bind polymerized fibrin, are key virulence strategies for the pathogenesis of bloodstream infections, which culminate in the establishment of abscess lesions. Pathogen-controlled processes, involving a wide spectrum of secreted factors, are responsible for the recruitment and destruction of immune cells, transforming abscess lesions into purulent exudate, with which staphylococci disseminate to produce new infectious lesions or to infect new hosts. Research on bloodstream infections is a frontier for the characterization of protective vaccine antigens and the development of immune therapeutics aiming to prevent disease or improve outcomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-012615-044351
2016-05-23
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pathol/11/1/annurev-pathol-012615-044351.html?itemId=/content/journals/10.1146/annurev-pathol-012615-044351&mimeType=html&fmt=ahah

Literature Cited

  1. van Belkum A, Melles DC, Nouwen J, van Leeuwen WB, van Wamel W. 1.  et al. 2009. Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect. Genet. Evol. 9:32–47 [Google Scholar]
  2. David MZ, Daum RS. 2.  2010. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 23:616–87 [Google Scholar]
  3. Liu C, Bayer AS, Cosgrove SE, Daum RS, Fridkin SK. 3.  et al. 2011. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin. Infect. Dis. 52:285–92 [Google Scholar]
  4. Bagnoli F, Bertholet S, Grandi G. 4.  2012. Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front. Cell. Infect. Microbiol. 2:16 [Google Scholar]
  5. Ogston A. 5.  1881. Report upon micro-organisms in surgical diseases. Br. Med. J. 1:369–75 [Google Scholar]
  6. Ogston A. 6.  1882. Micrococcus poisoning. J. Anat. Physiol. 17:24–58 [Google Scholar]
  7. Rosenbach FJ. 7.  1884. Mikroorganismen bei den Wund-Infections-Krankheiten des Menchen. Wiesbaden, Germany: Bergmann [Google Scholar]
  8. Clauditz A, Resch A, Wieland KP, Peschel A, Götz F. 8.  2006. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74:4950–53 [Google Scholar]
  9. Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. 9.  2010. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLOS Pathog. 6:e1001036 [Google Scholar]
  10. Guardabassi L, Schmidt KR, Petersen TS, Espinosa-Gongora C, Moodley A. 10.  et al. 2012. Mustelidae are natural hosts of Staphylococcus delphini group A. Vet. Microbiol. 159:351–53 [Google Scholar]
  11. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K. 11.  et al. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–71 [Google Scholar]
  12. Kallen AJ, Mu Y, Bulens S, Reingold A, Petit S. 12.  et al. 2010. Health care-associated invasive MRSA infections, 2005–2008. JAMA 304:641–48 [Google Scholar]
  13. Hartman BJ, Tomasz A. 13.  1984. Low affinity penicillin binding protein associated with β-lactam resistance in Staphylococcus aureus. J. Bacteriol. 158:513–16 [Google Scholar]
  14. Ubukata K, Nonoguchi R, Matsuhashi M, Konno M. 14.  1989. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J. Bacteriol. 171:2882–85 [Google Scholar]
  15. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J. 15.  et al. 2001. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 32:S114–32 [Google Scholar]
  16. Sreeramoju P, Porbandarwalla NS, Arango J, Latham K, Dent DL. 16.  et al. 2011. Recurrent skin and soft tissue infections due to methicillin-resistant Staphylococcus aureus requiring operative debridement. Am. J. Surg. 201:216–20 [Google Scholar]
  17. Kobayashi SD, Malachowa N, DeLeo FR. 17.  2015. Pathogenesis of Staphylococcus aureus abscesses. Am. J. Pathol. 185:1518–27 [Google Scholar]
  18. Kennedy AD, Bubeck Wardenburg J, Gardner DJ, Long D, Whitney AR. 18.  et al. 2010. Targeting of α-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J. Infect. Dis. 202:1050–58 [Google Scholar]
  19. Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY. 19.  et al. 2007. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13:1418–20 [Google Scholar]
  20. Spaan AN, Henry T, van Rooijen WJ, Perret M, Badiou C. 20.  et al. 2013. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe 13:584–94 [Google Scholar]
  21. Diep BA, Chan L, Tattevin P, Kajikawa O, Martin TR. 21.  et al. 2010. Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. PNAS 107:5587–92 [Google Scholar]
  22. Kretschmer D, Gleske AK, Rautenberg M, Wang R, Koberle M. 22.  et al. 2010. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe 7:463–73 [Google Scholar]
  23. Hahn BL, Onunkwo CC, Watts CJ, Sohnle PG. 23.  2009. Systemic dissemination and cutaneous damage in a mouse model of staphylococcal skin infections. Microb. Pathog. 47:16–23 [Google Scholar]
  24. Heyworth PG, Cross AR, Curnutte JT. 24.  2003. Chronic granulomatous disease. Curr. Opin. Immunol. 15:578–84 [Google Scholar]
  25. Bieber T. 25.  2008. Atopic dermatitis. N. Engl. J. Med. 358:1483–94 [Google Scholar]
  26. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ. 26.  et al. 2008. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–76 [Google Scholar]
  27. Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M. 27.  et al. 2008. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205:1551–57 [Google Scholar]
  28. Miller LS, O'Connell RM, Gutierrez MA, Pietras EM, Shahangian A. 28.  et al. 2006. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24:79–91 [Google Scholar]
  29. Abboud N, Chow SK, Saylor C, Janda A, Ravetch JV. 29.  et al. 2010. A requirement for FcγR in antibody-mediated bacterial toxin neutralization. J. Exp. Med. 207:2395–405 [Google Scholar]
  30. Frank KM, Zhou T, Moreno-Vinasco L, Hollett B, Garcia JG, Bubeck Wardenburg J. 30.  2012. Host response signature to Staphylococcus aureus α-hemolysin implicates pulmonary TH17 response. Infect. Immun. 80:3161–69 [Google Scholar]
  31. Holland TL, Arnold C, Fowler VG Jr. 31.  2014. Clinical management of Staphylococcus aureus bacteremia: a review. JAMA 312:1330–41 [Google Scholar]
  32. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. 32.  2012. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev. 25:362–86 [Google Scholar]
  33. Klevens RM, Edwards JR, Gaynes RP. 33.  2008. The impact of antimicrobial-resistant, health care-associated infections on mortality in the United States. Clin. Infect. Dis. 47:927–30 [Google Scholar]
  34. Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL. 34.  et al. 2002. Health care–associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann. Intern. Med. 137:791–97 [Google Scholar]
  35. Jensen AG, Wachmann CH, Poulsen KB, Espersen F, Scheibel J. 35.  et al. 1999. Risk factors for hospital-acquired Staphylococcus aureus bacteremia. Arch. Intern. Med. 159:1437–44 [Google Scholar]
  36. Musher DM, Lamm N, Darouiche RO, Young EJ, Hamill RJ, Landon GC. 36.  1994. The current spectrum of Staphylococcus aureus infection in a tertiary care hospital. Medicine 73:186–208 [Google Scholar]
  37. Spaan AN, Surewaard BG, Nijland R, van Strijp JA. 37.  2013. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu. Rev. Microbiol. 67:629–50 [Google Scholar]
  38. Bestebroer J, van Kessel KP, Azouagh H, Walenkamp AM, Boer IG. 38.  et al. 2009. Staphylococcal SSL5 inhibits leukocyte activation by chemokines and anaphylatoxins. Blood 113:328–37 [Google Scholar]
  39. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, van Wamel WJ. 39.  et al. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199:687–95 [Google Scholar]
  40. Prat C, Bestebroer J, de Haas CJ, van Strijp JA, van Kessel KP. 40.  2006. A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1. J. Immunol. 177:8017–26 [Google Scholar]
  41. Bestebroer J, Poppelier MJ, Ulfman LH, Lenting PJ, Denis CV. 41.  et al. 2007. Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 109:2936–43 [Google Scholar]
  42. Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG. 42.  et al. 2002. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat. Med. 8:687–93 [Google Scholar]
  43. Forsman H, Christenson K, Bylund J, Dahlgren C. 43.  2012. Receptor-dependent and -independent immunomodulatory effects of phenol-soluble modulin peptides from Staphylococcus aureus on human neutrophils are abrogated through peptide inactivation by reactive oxygen species. Infect. Immun. 80:1987–95 [Google Scholar]
  44. Berends ET, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SH. 44.  2014. Bacteria under stress by complement and coagulation. FEMS Microbiol. Rev. 38:1146–71 [Google Scholar]
  45. Müller-Eberhard HJ. 45.  1988. Molecular organization and function of the complement system. Annu. Rev. Biochem. 57:321–47 [Google Scholar]
  46. Jongerius I, Kohl J, Pandey MK, Ruyken M, van Kessel KP. 46.  et al. 2007. Staphylococcal complement evasion by various convertase-blocking molecules. J. Exp. Med. 204:2461–71 [Google Scholar]
  47. Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH. 47.  2011. Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J. Immunol. 186:6445–53 [Google Scholar]
  48. Hair PS, Echague CG, Sholl AM, Watkins JA, Geoghegan JA. 48.  et al. 2010. Clumping factor A interaction with complement factor I increases C3b cleavage on the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis. Infect. Immun. 78:1717–27 [Google Scholar]
  49. Bestebroer J, Aerts PC, Rooijakkers SH, Pandey MK, Kohl J. 49.  et al. 2010. Functional basis for complement evasion by staphylococcal superantigen-like 7. Cell. Microbiol. 12:1506–16 [Google Scholar]
  50. Itoh S, Hamada E, Kamoshida G, Takeshita K, Oku T, Tsuji T. 50.  2010. Staphylococcal superantigen-like protein 5 inhibits matrix metalloproteinase 9 from human neutrophils. Infect. Immun. 78:3298–305 [Google Scholar]
  51. Forsgren A, Quie PG. 51.  1974. Effects of staphylococcal protein A on heat labile opsonins. J. Immunol. 112:1177–80 [Google Scholar]
  52. Smith EJ, Visai L, Kerrigan SW, Speziale P, Foster TJ. 52.  2011. The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus. Infect. Immun. 79:3801–9 [Google Scholar]
  53. Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA. 53.  2005. Anti-opsonic properties of staphylokinase. Microbes Infect. 7:476–84 [Google Scholar]
  54. O'Riordan K, Lee JC. 54.  2004. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17:218–34 [Google Scholar]
  55. Guggenberger C, Wolz C, Morrissey JA, Heesemann J. 55.  2012. Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLOS Pathog. 8:e1002434 [Google Scholar]
  56. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y. 56.  et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532–35 [Google Scholar]
  57. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM. 57.  et al. 2005. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202:209–15 [Google Scholar]
  58. Mandell GL. 58.  1975. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal–leukocyte interaction. J. Clin. Investig. 55:561–66 [Google Scholar]
  59. Richardson AR, Dunman PM, Fang FC. 59.  2006. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol. Microbiol. 61:927–39 [Google Scholar]
  60. Richardson AR, Libby SJ, Fang FC. 60.  2008. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 319:1672–76 [Google Scholar]
  61. Weidenmaier C, Peschel A, Kempf VA, Lucindo N, Yeaman MR, Bayer AS. 61.  2005. DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect. Immun. 73:8033–38 [Google Scholar]
  62. Herbert S, Bera A, Nerz C, Kraus D, Peschel A. 62.  et al. 2007. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLOS Pathog. 3:e102 [Google Scholar]
  63. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. 63.  2004. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol. 172:1169–76 [Google Scholar]
  64. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M. 64.  et al. 2004. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus–derived proteinases. Antimicrob. Agents Chemother. 48:4673–79 [Google Scholar]
  65. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Kockritz-Blickwede M. 65.  2010. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J. Innate Immun. 2:576–86 [Google Scholar]
  66. Thammavongsa V, Missiakas DM, Schneewind O. 66.  2013. Staphylococcus aureus conversion of neutrophil extracellular traps into deoxyadenosine promotes immune cell death. Science 342:863–66 [Google Scholar]
  67. Thammavongsa V, Kern JW, Missiakas DM, Schneewind O. 67.  2009. Staphylococcus aureus synthesizes adenosine to escape host immune responses. J. Exp. Med. 206:2417–27 [Google Scholar]
  68. 68.  Deleted in proof
  69. Wilke GA, Bubeck Wardenburg J. 69.  2010. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. PNAS 107:13473–78 [Google Scholar]
  70. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. 70.  1996. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274:1859–66 [Google Scholar]
  71. Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM. 71.  et al. 2011. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17:1310–14 [Google Scholar]
  72. Alonzo F 3rd, Torres VJ. 72.  2014. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol. Mol. Biol. Rev. 78:199–230 [Google Scholar]
  73. Chatterjee SS, Joo HS, Duong AC, Dieringer TD, Tan VY. 73.  et al. 2013. Essential Staphylococcus aureus toxin export system. Nat. Med. 19:364–67 [Google Scholar]
  74. Peschel A, Otto M. 74.  2013. Phenol-soluble modulins and staphylococcal infection. Nat. Rev. Microbiol. 11:667–73 [Google Scholar]
  75. Much H. 75.  1908. Über eine Vorstufe des Fibrinfermentes in Kulturen von Staphylokokkus aureus. Biochem. Z. 14:143–55 [Google Scholar]
  76. Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I. 76.  et al. 2003. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425:535–39 [Google Scholar]
  77. Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. 77.  2010. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLOS Pathog. 6:e1001036 [Google Scholar]
  78. Adams RL, Bird RJ. 78.  2009. Review article: coagulation cascade and therapeutics update: relevance to nephrology. Part 1: overview of coagulation, thrombophilias and history of anticoagulants. Nephrology 14:462–70 [Google Scholar]
  79. Doolittle RF. 79.  2003. Structural basis of the fibrinogen-fibrin transformation: contributions from X-ray crystallography. Blood Rev. 17:33–41 [Google Scholar]
  80. Ware S, Donahue JP, Hawiger J, Anderson WF. 80.  1999. Structure of the fibrinogen gamma-chain integrin binding and factor XIIIa cross-linking sites obtained through carrier protein driven crystallization. Protein Sci. 8:2663–71 [Google Scholar]
  81. Panizzi P, Friedrich R, Fuentes-Prior P, Bode W, Bock PE. 81.  2004. The staphylocoagulase family of zymogen activator and adhesion proteins. Cell Mol. Life Sci. 61:2793–98 [Google Scholar]
  82. Panizzi P, Friedrich R, Fuentes-Prior P, Richter K, Bock PE, Bode W. 82.  2006. Fibrinogen substrate recognition by staphylocoagulase·(pro)thrombin complexes. J. Biol. Chem. 281:1179–87 [Google Scholar]
  83. Kroh HK, Panizzi P, Bock PE. 83.  2009. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. PNAS 106:7786–91 [Google Scholar]
  84. Bjerketorp J, Nilsson M, Ljungh A, Flock JI, Jacobsson K, Frykberg L. 84.  2002. A novel von Willebrand factor binding protein expressed by Staphylococcus aureus. Microbiology 148:2037–44 [Google Scholar]
  85. Thomer L, Schneewind O, Missiakas D. 85.  2013. Multiple ligands of von Willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J. Biol. Chem. 288:28283–92 [Google Scholar]
  86. Kroh HK, Panizzi P, Bock PE. 86.  2009. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. PNAS 106:7786–91 [Google Scholar]
  87. McAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM. 87.  2011. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLOS Pathog. 7:20 [Google Scholar]
  88. Birch-Hirschfeld L. 88.  1934. Über die Agglutination von Staphylokokken durch Bestandteile des Säugetierblutplasmas. Klin. Woschenschrift 13:331–33 [Google Scholar]
  89. Ganesh VK, Rivera JJ, Smeds E, Ko Y-P, Bowden MG. 89.  et al. 2008. A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLOS Pathog. 4:e1000226 [Google Scholar]
  90. McDevitt D, Francois P, Vaudaux P, Foster TJ. 90.  1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 11:237–48 [Google Scholar]
  91. McDevitt D, Francois P, Vaudaux P, Foster TJ. 91.  1995. Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol. Microbiol. 16:895–907 [Google Scholar]
  92. Thomer L, Becker S, Emolo C, Quach A, Kim HK. 92.  et al. 2014. N-acetylglucosaminylation of serine-aspartate repeat proteins promotes Staphylococcus aureus bloodstream infection. J. Biol. Chem. 289:3478–86 [Google Scholar]
  93. Thomer L, Schneewind O, Missiakas D. 93.  2013. Multiple ligands of von Willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J. Biol. Chem. 288:28283–92 [Google Scholar]
  94. Panizzi P, Nahrendorf M, Figueiredo JL, Panizzi J, Marinelli B. 94.  et al. 2011. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat. Med. 17:1142–46 [Google Scholar]
  95. Duthie ES. 95.  1954. Evidence for two forms of staphylococcal coagulase. J. Gen. Microbiol. 10:427–36 [Google Scholar]
  96. Levi M, Keller TT, van Gorp E, ten Cate H. 96.  2003. Infection and inflammation and the coagulation system. Cardiovasc. Res. 60:26–39 [Google Scholar]
  97. Frick IM, Bjorck L, Herwald H. 97.  2007. The dual role of the contact system in bacterial infectious disease. Thromb. Haemost. 98:497–502 [Google Scholar]
  98. Herwald H, Morgelin M, Dahlback B, Bjorck L. 98.  2003. Interactions between surface proteins of Streptococcus pyogenes and coagulation factors modulate clotting of human plasma. J. Thromb. Haemost. 1:284–91 [Google Scholar]
  99. Loof TG, Morgelin M, Johansson L, Oehmcke S, Olin AI. 99.  et al. 2011. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 18:2589–98 [Google Scholar]
  100. Itoh S, Yokoyama R, Kamoshida G, Fujiwara T, Okada H. 100.  et al. 2013. Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to prothrombin and factor Xa via their γ-carboxyglutamic acid (Gla) domain. J. Biol. Chem. 288:21569–80 [Google Scholar]
  101. Bergmann S, Hammerschmidt S. 101.  2007. Fibrinolysis and host response in bacterial infections. Thromb. Haemost. 98:512–20 [Google Scholar]
  102. Parry MA, Fernandez-Catalan C, Bergner A, Huber R, Hopfner KP. 102.  et al. 1998. The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat. Struct. Biol. 5:917–23 [Google Scholar]
  103. Collen D. 103.  1998. Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat. Med. 4:279–84 [Google Scholar]
  104. van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA. 104.  2006. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J. Bacteriol. 188:1310–15 [Google Scholar]
  105. Jin T, Bokarewa M, McIntyre L, Tarkowski A, Corey GR. 105.  et al. 2003. Fatal outcome of bacteraemic patients caused by infection with staphylokinase-deficient Staphylococcus aureus strains. J. Med. Microbiol. 52:919–23 [Google Scholar]
  106. Okada K, Ueshima S, Tanaka M, Fukao H, Matsuo O. 106.  2000. Analysis of plasminogen activation by the plasmin-staphylokinase complex in plasma of α2-antiplasmin-deficient mice. Blood Coagul. Fibrinolysis. 11:645–55 [Google Scholar]
  107. Kwiecinski J, Josefsson E, Mitchell J, Higgins J, Magnusson M. 107.  et al. 2010. Activation of plasminogen by staphylokinase reduces the severity of Staphylococcus aureus systemic infection. J. Infect. Dis. 202:1041–49 [Google Scholar]
  108. Peetermans M, Vanassche T, Liesenborghs L, Claes J, Vande Velde G. 108.  et al. 2014. Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiol. 14:310 [Google Scholar]
  109. Foster TJ, Geoghegan JA, Ganesh VK, Hook M. 109.  2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12:49–62 [Google Scholar]
  110. Peacock SJ, Foster TJ, Cameron BJ, Berendt AR. 110.  1999. Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145:Pt. 123477–86 [Google Scholar]
  111. Kerdudou S, Laschke MW, Sinha B, Preissner KT, Menger MD, Herrmann M. 111.  2006. Fibronectin binding proteins contribute to the adherence of Staphylococcus aureus to intact endothelium in vivo. Thromb. Haemost. 96:183–89 [Google Scholar]
  112. Sinha B, Francois PP, Nusse O, Foti M, Hartford OM. 112.  et al. 1999. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell. Microbiol. 1:101–17 [Google Scholar]
  113. Edwards AM, Potts JR, Josefsson E, Massey RC. 113.  2010. Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA. PLOS Pathog. 6:e1000964 [Google Scholar]
  114. Sheen TR, Ebrahimi CM, Hiemstra IH, Barlow SB, Peschel A, Doran KS. 114.  2010. Penetration of the blood-brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid. J. Mol. Med. 88:633–39 [Google Scholar]
  115. Sadler JE. 115.  1998. Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem. 67:395–424 [Google Scholar]
  116. Pappelbaum KI, Gorzelanny C, Grassle S, Suckau J, Laschke MW. 116.  et al. 2013. Ultralarge von Willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress. Circulation 128:50–59 [Google Scholar]
  117. Claes J, Vanassche T, Peetermans M, Liesenborghs L, Vandenbriele C. 117.  et al. 2014. Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor-binding protein. Blood 124:1669–76 [Google Scholar]
  118. Soerensen KE, Olsen HG, Skovgaard K, Wiinberg B, Nielsen OL. 118.  et al. 2013. Disseminated intravascular coagulation in a novel porcine model of severe Staphylococcus aureus sepsis fulfills human clinical criteria. J. Comp. Pathol. 149:463–74 [Google Scholar]
  119. Powers ME, Kim HK, Wang Y, Bubeck Wardenburg J. 119.  2012. ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J. Infect. Dis. 206:352–56 [Google Scholar]
  120. Kubica M, Guzik K, Koziel J, Zarebski M, Richter W. 120.  et al. 2008. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLOS ONE 3:e1409 [Google Scholar]
  121. Gresham HD, Lowrance JH, Caver TE, Wilson BS, Cheung AL, Lindberg FP. 121.  2000. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 164:3713–22 [Google Scholar]
  122. Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM. 122.  2009. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J. 23:3393–404 [Google Scholar]
  123. Cheng AG, DeDent AC, Schneewind O, Missiakas D. 123.  2011. A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol. 19:225–32 [Google Scholar]
  124. Corrigan RM, Miajlovic H, Foster TJ. 124.  2009. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol. 9:22 [Google Scholar]
  125. Falugi F, Kim HK, Missiakas DM, Schneewind O. 125.  2013. The role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. mBio 4:e00575–613 [Google Scholar]
  126. Goodyear CS, Silverman GJ. 126.  2003. Death by a B cell superantigen: in vivo VH-targeted apoptotic supraclonal B cell deletion by a staphylococcal toxin. J. Exp. Med. 197:1125–39 [Google Scholar]
  127. Bubeck Wardenburg J, Williams WA, Missiakas D. 127.  2006. Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins. PNAS 103:13831–36 [Google Scholar]
  128. Cheung GY, Kretschmer D, Duong AC, Yeh AJ, Ho TV. 128.  et al. 2014. Production of an attenuated phenol-soluble modulin variant unique to the MRSA clonal complex 30 increases severity of bloodstream infection. PLOS Pathog. 10:e1004298 [Google Scholar]
  129. Gupta RK, Collier RJ, Rappuoli R, Siber GR. 129.  1997. Differences in the immunogenicity of native and formalinized cross reacting material (CRM197) of diphtheria toxin in mice and guinea pigs and their implications on the development and control of diphtheria vaccine based on CRMs. Vaccine 15:1341–43 [Google Scholar]
  130. Heidelberger M, Avery OT. 130.  1923. The soluble specific substances of pneumococcus. J. Exp. Med. 38:73–79 [Google Scholar]
  131. MacLeod CM, Hodges RG, Heidelberger M, Bernhard WG. 131.  1945. Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J. Exp. Med. 82:445–65 [Google Scholar]
  132. Robbins JB, Schneerson R. 132.  1990. Polysaccharide-protein conjugates: a new generation of vaccines. J. Infect. Dis. 161:821–32 [Google Scholar]
  133. Shinefield H, Black S, Fattom A, Horwith G, Rasgon S. 133.  et al. 2002. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N. Engl. J. Med. 346:491–96 [Google Scholar]
  134. Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F. 134.  et al. 2013. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309:1368–78 [Google Scholar]
  135. Kernodle DS. 135.  2011. Expectations regarding vaccines and immune therapies directed against Staphylococcus aureus α-hemolysin. J. Infect. Dis. 203:1692–93 [Google Scholar]
  136. Kim HK, Cheng AG, Kim H-Y, Missiakas DM, Schneewind O. 136.  2010. Non-toxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections. J. Exp. Med. 207:1863–70 [Google Scholar]
  137. McAdow M, DeDent AC, Emolo C, Cheng AG, Kreiswirth BN. 137.  et al. 2012. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect. Immun. 80:3389–98 [Google Scholar]
  138. Salgado-Pabón W, Schlievert PM. 138.  2014. Models matter: the search for an effective Staphylococcus aureus vaccine. Nat. Rev. Microbiol. 12:585–91 [Google Scholar]
/content/journals/10.1146/annurev-pathol-012615-044351
Loading
/content/journals/10.1146/annurev-pathol-012615-044351
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error