1932

Abstract

The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-012615-044506
2016-05-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pathol/11/1/annurev-pathol-012615-044506.html?itemId=/content/journals/10.1146/annurev-pathol-012615-044506&mimeType=html&fmt=ahah

Literature Cited

  1. Mehta D, Malik AB. 1.  2006. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86:279–367 [Google Scholar]
  2. Folkman J. 2.  1995. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333:1757–63 [Google Scholar]
  3. Carmeliet P. 3.  2005. Angiogenesis in life, disease and medicine. Nature 438:932–36 [Google Scholar]
  4. Folkman J. 4.  2007. Angiogenesis: an organizing principle for drug discovery?. Nat. Rev. Drug Discov. 6:273–86 [Google Scholar]
  5. Folkman J. 5.  2003. Fundamental concepts of the angiogenic process. Curr. Mol. Med. 3:643–51 [Google Scholar]
  6. Goel S, Duda DG, Xu L, Munn LL, Boucher Y. 6.  et al. 2011. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91:1071–121 [Google Scholar]
  7. Folkman J. 7.  1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285:1182–86 [Google Scholar]
  8. Carmeliet P, Jain RK. 8.  2011. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10:417–27 [Google Scholar]
  9. Xu K, Cleaver O. 9.  2011. Tubulogenesis during blood vessel formation. Semin. Cell Dev. Biol. 22:993–1004 [Google Scholar]
  10. Clark E, Clark EL. 10.  1935. Observations on changes in blood vascular endothelium in the living animal. Am. J. Anat. 57:384–438 [Google Scholar]
  11. Abell R. 11.  1946. The permeability of blood capillary sprouts and newly formed blood capillaries as compared to that of older capillaries. Am. J. Physiol. 147:231–41 [Google Scholar]
  12. Schoefl GI. 12.  1963. Studies on inflammation. II. Growing capillaries: their structure and permeability. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 337:97–141 [Google Scholar]
  13. Seymour LW. 13.  1992. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit. Rev. Ther. Drug Carrier Syst. 9:135–87 [Google Scholar]
  14. Aird WC. 14.  2007. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100:158–73 [Google Scholar]
  15. Dempsey EW, Wislocki GB. 15.  1955. An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain. J. Biophys. Biochem. Cytol. 1:245–56 [Google Scholar]
  16. Schackert G, Simmons RD, Buzbee TM, Hume DA, Fidler IJ. 16.  1988. Macrophage infiltration into experimental brain metastases: occurrence through an intact blood-brain barrier. J. Natl. Cancer Inst. 80:1027–34 [Google Scholar]
  17. Feng D, Nagy JA, Pyne K, Hammel I, Dvorak HF, Dvorak AM. 17.  1999. Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 6:23–44 [Google Scholar]
  18. Feng D, Nagy JA, Hipp J, Dvorak HF, Dvorak AM. 18.  1996. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J. Exp. Med. 183:1981–86 [Google Scholar]
  19. Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE. 19.  et al. 2002. Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice.. J. Biol. Chem. 277:40091–98 [Google Scholar]
  20. Dejana E. 20.  2004. Endothelial cell-cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5:261–70 [Google Scholar]
  21. Carmeliet P. 21.  1999. Developmental biology. Controlling the cellular brakes. Nature 401:657–58 [Google Scholar]
  22. Crosby CV, Fleming PA, Argraves WS, Corada M, Zanetta L. 22.  et al. 2005. VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood 105:2771–76 [Google Scholar]
  23. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R. 23.  et al. 1999. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. PNAS 96:9815–20 [Google Scholar]
  24. Weber C, Fraemohs L, Dejana E. 24.  2007. The role of junctional adhesion molecules in vascular inflammation. Nat. Rev. Immunol. 7:467–77 [Google Scholar]
  25. Tsukita S, Furuse M, Itoh M. 25.  2001. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2:285–93 [Google Scholar]
  26. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H. 26.  et al. 2003. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 161:653–60 [Google Scholar]
  27. Kluger MS, Clark PR, Tellides G, Gerke V, Pober JS. 27.  2013. Claudin-5 controls intercellular barriers of human dermal microvascular but not human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33:489–500 [Google Scholar]
  28. Geiger B, Spatz JP, Bershadsky AD. 28.  2009. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33 [Google Scholar]
  29. Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I. 29.  et al. 2012. Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J. Cell Biol. 196:641–52 [Google Scholar]
  30. Chen XL, Nam JO, Jean C, Lawson C, Walsh CT. 30.  et al. 2012. VEGF-induced vascular permeability is mediated by FAK. Dev. Cell 22:146–57 [Google Scholar]
  31. Gaengel K, Genove G, Armulik A, Betsholtz C. 31.  2009. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29:630–38 [Google Scholar]
  32. Hirschi KK, Burt JM, Hirschi KD, Dai C. 32.  2003. Gap junction communication mediates transforming growth factor-β activation and endothelial-induced mural cell differentiation. Circ. Res. 93:429–37 [Google Scholar]
  33. Palade GE. 33.  1953. Fine structure of blood capillaries. J. Appl. Phys. 24.1: 1424–36
  34. Dvorak AM. 34.  2007. Endothelial biomedicine New York: Cambridge Univ. Press
  35. Chang SH, Feng D, Nagy JA, Sciuto TE, Dvorak AM, Dvorak HF. 35.  2009. Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am. J. Pathol. 175:1768–76 [Google Scholar]
  36. Majno G, Palade GE, Schoefl GI. 36.  1961. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J. Biophys. Biochem. Cytol. 11:607–26 [Google Scholar]
  37. Kohn S, Nagy JA, Dvorak HF, Dvorak AM. 37.  1992. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab. Investig. J. Tech. Methods Pathol. 67:596–607 [Google Scholar]
  38. Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. 38.  1996. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J. Leukoc. Biol. 59:100–15 [Google Scholar]
  39. Nagy JA, Dvorak AM, Dvorak HF. 39.  2007. VEGF-A and the induction of pathological angiogenesis. Annu. Rev. Pathol. 2:251–75 [Google Scholar]
  40. Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF. 40.  2010. Heterogeneity of the tumor vasculature. Semin. Thromb. Hemost. 36:321–31 [Google Scholar]
  41. Chang SH, Kanasaki K, Gocheva V, Blum G, Harper J. 41.  et al. 2009. VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res. 69:4537–44 [Google Scholar]
  42. Valdez CN, Arboleda-Velasquez JF, Amarnani DS, Kim LA, D'Amore PA. 42.  2014. Retinal microangio-pathy in a mouse model of inducible mural cell loss. Am. J. Pathol. 184:2618–26 [Google Scholar]
  43. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. 43.  1983. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–85 [Google Scholar]
  44. Ferrara N, Henzel WJ. 44.  1989. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161:851–58 [Google Scholar]
  45. Roberts WG, Palade GE. 45.  1995. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108:Pt. 62369–79 [Google Scholar]
  46. dela Paz NG, D'Amore PA. 46.  2009. Arterial versus venous endothelial cells. Cell Tissue Res. 335:5–16 [Google Scholar]
  47. Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE. 47.  et al. 2008. VEGF and TGF-β are required for the maintenance of the choroid plexus and ependyma. J. Exp. Med. 205:491–501 [Google Scholar]
  48. D'Amore PA. 48.  2007. Vascular endothelial cell growth factor-A: not just for endothelial cells anymore. Am. J. Pathol. 171:14–18 [Google Scholar]
  49. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. 49.  1991. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5:1806–14 [Google Scholar]
  50. Jingjing L, Xue Y, Agarwal N, Roque RS. 50.  1999. Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Investig. Ophthalmol. Vis. Sci. 40:752–59 [Google Scholar]
  51. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D. 51.  et al. 1991. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266:11947–54 [Google Scholar]
  52. Whittle C, Gillespie K, Harrison R, Mathieson PW, Harper SJ. 52.  1999. Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clin. Sci. 97:303–12 [Google Scholar]
  53. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. 53.  1992. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–91 [Google Scholar]
  54. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC. 54.  et al. 1992. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187:1579–86 [Google Scholar]
  55. Pajusola K, Aprelikova O, Korhonen J, Kaipainen A, Pertovaara L. 55.  et al. 1992. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res. 52:5738–43 [Google Scholar]
  56. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. 56.  1998. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–45 [Google Scholar]
  57. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. 57.  2006. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7:359–71 [Google Scholar]
  58. Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Martin J, Zachary I. 58.  1997. Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett. 420:28–32 [Google Scholar]
  59. Gerber HP, Dixit V, Ferrara N. 59.  1998. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273:13313–16 [Google Scholar]
  60. Glass CA, Harper SJ, Bates DO. 60.  2006. The anti-angiogenic VEGF isoform VEGF165b transiently increases hydraulic conductivity, probably through VEGF receptor 1 in vivo. J. Physiol. 572:243–57 [Google Scholar]
  61. Ku DD, Zaleski JK, Liu S, Brock TA. 61.  1993. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 265:H586–92 [Google Scholar]
  62. Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E. 62.  et al. 2008. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–13 [Google Scholar]
  63. Unemori EN, Ferrara N, Bauer EA, Amento EP. 63.  1992. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell. Physiol. 153:557–62 [Google Scholar]
  64. Yang R, Thomas GR, Bunting S, Ko A, Ferrara N. 64.  et al. 1996. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J. Cardiovasc. Pharmacol. 27:838–44 [Google Scholar]
  65. Vajanto I, Rissanen TT, Rutanen J, Hiltunen MO, Tuomisto TT. 65.  et al. 2002. Evaluation of angiogenesis and side effects in ischemic rabbit hindlimbs after intramuscular injection of adenoviral vectors encoding VEGF and LacZ. J. Gene Med. 4:371–80 [Google Scholar]
  66. Wang WY, Whittles CE, Harper SJ, Bates DO. 66.  2004. An adenovirus-mediated gene-transfer model of angiogenesis in rat mesentery. Microcirculation 11:361–75 [Google Scholar]
  67. Hudson N, Powner MB, Sarker MH, Burgoyne T, Campbell M. 67.  et al. 2014. Differential apicobasal VEGF signaling at vascular blood-neural barriers. Dev. Cell 30:541–52 [Google Scholar]
  68. Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E. 68.  et al. 1999. Marked induction of the IAP antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem. Biophys. Res. Commun. 264:781–88 [Google Scholar]
  69. Dimmeler S, Dernbach E, Zeiher AM. 69.  2000. Phosphorylation of the endothelial nitric oxide synthase at Ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 477:258–62 [Google Scholar]
  70. Seymour LW, Shoaibi MA, Martin A, Ahmed A, Elvin P. 70.  et al. 1996. Vascular endothelial growth factor stimulates protein kinase C-dependent phospholipase D activity in endothelial cells. Lab. Investig. 75:427–37 [Google Scholar]
  71. Soga N, Connolly JO, Chellaiah M, Kawamura J, Hruska KA. 71.  2001. Rac regulates vascular endothelial growth factor stimulated motility. Cell Commun. Adhes. 8:1–13 [Google Scholar]
  72. Garrett TA, Van Buul JD, Burridge K. 72.  2007. VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp. Cell Res. 313:3285–97 [Google Scholar]
  73. Abedi H, Zachary I. 73.  1997. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. 272:15442–51 [Google Scholar]
  74. Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV. 74.  2007. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ. Res. 101:570–80 [Google Scholar]
  75. Tugues S, Honjo S, Konig C, Padhan N, Kroon J. 75.  et al. 2013. Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-β1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo. J. Biol. Chem. 288:19060–71 [Google Scholar]
  76. Bhattacharya R, Gonzalez AM, Debiase PJ, Trejo HE, Goldman RD. 76.  et al. 2009. Recruitment of vimentin to the cell surface by β3 integrin and plectin mediates adhesion strength. J. Cell. Sci. 122:1390–400 [Google Scholar]
  77. Yamaoka-Tojo M, Tojo T, Kim HW, Hilenski L, Patrushev NA. 77.  et al. 2006. IQGAP1 mediates VE-cadherin-based cell-cell contacts and VEGF signaling at adherence junctions linked to angiogenesis. Arterioscler. Thromb. Vasc. Biol. 26:1991–97 [Google Scholar]
  78. Rousseau S, Houle F, Landry J, Huote J. 78.  1997. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–77 [Google Scholar]
  79. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J. 79.  et al. 2000. Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol. Chem. 275:10661–72 [Google Scholar]
  80. Matsumoto T, Bohman S, Dixelius J, Berge T, Dimberg A. 80.  et al. 2005. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24:2342–53 [Google Scholar]
  81. Lamalice L, Houle F, Huot J. 81.  2006. Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J. Biol. Chem. 281:34009–20 [Google Scholar]
  82. Cain RJ, Ridley AJ. 82.  2009. Phosphoinositide 3-kinases in cell migration. Biol. Cell 101:13–29 [Google Scholar]
  83. Shizukuda Y, Tang S, Yokota R, Ware A. 83.  1999. Vascular endothelial growth factor–induced endothelial cell migration and proliferation depend on a nitric oxide–mediated decrease in protein kinase Cδ activity. Circ. Res. 85:247–56 [Google Scholar]
  84. Holmqvist K, Cross MJ, Rolny C, Hagerkvist R, Rahimi N. 84.  et al. 2004. The adaptor protein Shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J. Biol. Chem. 279:22267–75 [Google Scholar]
  85. Zeng H, Zhao D, Yang S, Datta K, Mukhopadhyay D. 85.  2003. Heterotrimeric Gαq/Gα11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. J. Biol. Chem. 278:20738–45 [Google Scholar]
  86. Wellner M, Maasch C, Kupprion C, Lindschau C, Luft FC, Haller H. 86.  1999. The proliferative effect of vascular endothelial growth factor requires protein kinase C-α and protein kinase C-ζ. Arterioscler. Thromb. Vasc. Biol. 19:178–85 [Google Scholar]
  87. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F. 87.  1999. Role of avb3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 18:882–92 [Google Scholar]
  88. Hood J, Granger HJ. 88.  1998. Protein kinase G mediates vascular endothelial growth factor-induced Raf-1 activation and proliferation in human endothelial cells. J. Biol. Chem. 273:23504–8 [Google Scholar]
  89. Papapetropoulos A, Garcia-Gardena G, Madri J, Sessa W. 89.  1997. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Investig. 100:3131–39 [Google Scholar]
  90. Nakamura Y, Patrushev N, Inomata J, Mehta D, Urao N. 90.  et al. 2008. Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells. Circ. Res. 102:1182–91 [Google Scholar]
  91. Wong C, Jin ZG. 91.  2005. Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. J. Biol. Chem. 280:33262–69 [Google Scholar]
  92. Staker S, Vitali A, Caesar C, Domagala T, Groenen LC. 92.  et al. 1999. A mutant form of vascular endothelial growth factor (VEGF) that lacks VEGF receptor-2 activation retains the ability to induce vascular permeability. J. Biol. Chem. 274:34884–92 [Google Scholar]
  93. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. 93.  1999. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1: a potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 274:23463–67 [Google Scholar]
  94. Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D. 94.  et al. 1998. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97:99–107 [Google Scholar]
  95. Fischer S, Clauss M, Wiesnet M, Renz D, Schaper W, Karliczek G. 95.  1999. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am. J. Physiol. 276:C812–20 [Google Scholar]
  96. Wu HM, Yuan Y, Zawieja DC, Tinsley J, Granger H. 96.  1999. Role of phospholipase C, protein kinase C, and calcium in VEGF-induced venular hyperpermeability. Am. J. Physiol. 276:H535–42 [Google Scholar]
  97. Senger D, Claffey K, Benes J, Perruzzi C, Sergiou A, Detmar M. 97.  1997. Angiogenesis promoted by vascular endothelial growth factor: regulation through a1b1 and a2b1 integrins. PNAS 94:13612–17 [Google Scholar]
  98. Wu LW, Mayo LD, Dunbar JD, Kessler KM, Baerwald MR. 98.  et al. 2000. Utilization of distinct signaling pathways by receptors for vascular endothelial growth factor and other mitogens in the induction of endothelial cell proliferation. J. Biol. Chem. 275:5096–103 [Google Scholar]
  99. Doanes AM, Hegland DD, Sethi R, Kovesdi I, Bruder JT, Finkel T. 99.  1999. VEGF stimulates MAPK through a pathway that is unique for receptor tyrosine kinases. Biochem. Biophys. Res. Commun. 255:545–48 [Google Scholar]
  100. Pedram A, Razandi M, Levin ER. 100.  1998. Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J. Biol. Chem. 273:26722–28 [Google Scholar]
  101. Xia P, Aiello LP, Ishii H, Jiang ZY, Park DJ. 101.  et al. 1996. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Investig. 98:2018–26 [Google Scholar]
  102. Takahashi T, Ueno H, Shibuya M. 102.  1999. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18:2221–30 [Google Scholar]
  103. Takahashi T, Yamaguchi S, Chida K, Shibuya M. 103.  2001. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 20:2768–78 [Google Scholar]
  104. Kroll J, Waltenberger J. 104.  1997. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J. Biol. Chem. 272:32521–27 [Google Scholar]
  105. Bouloumie A, Schini-Kerth V, Busse R. 105.  1999. Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc. Res. 41:773–80 [Google Scholar]
  106. Parenti A, Morbidelli L, Cui XL, Douglas JG, Hood JD. 106.  et al. 1998. Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinase1/2 activation in postcapillary endothelium. J. Biol. Chem. 273:4220–26 [Google Scholar]
  107. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. 107.  1999. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–5 [Google Scholar]
  108. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y. 108.  et al. 1999. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601 [Google Scholar]
  109. He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB. 109.  1999. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through Flk-1/KDR activation of c-Src. J. Biol. Chem. 274:25130–35 [Google Scholar]
  110. Clauss M, Weich H, Breier G, Knies U, Rocki W. 110.  et al. 1996. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271:17629–34 [Google Scholar]
  111. Oh H, Tagaki H, Suzuma K, Otani A, Matsumura M, Honda Y. 111.  1999. Hypoxia and vascular endothelial growth factor selectively upregulate angiopoietin-2 in bovine microvascular endothelial cells. J. Biol. Chem. 274:15732–39 [Google Scholar]
  112. Shen B-Q, Lee DY, Zioncheck TF. 112.  1999. Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and protein kinase C signaling pathway. J. Biol. Chem. 274:33057–63 [Google Scholar]
  113. Cunningham SA, Tran TM, Arrate MP, Bjercke R, Brock TA. 113.  1999. KDR activation is crucial for VEGF-mediated Ca mobilization in human umbilical vein endothelial cells. Am. J. Physiol. 276:C176–81 [Google Scholar]
  114. Kroll J, Waltenberger J. 114.  1999. A novel function of the vascular endothelial growth factor receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochem. Biophys. Res. Commun. 265:636–39 [Google Scholar]
  115. Dejana E, Spagnuolo R, Bazzoni G. 115.  2001. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb. Haemost. 86:308–15 [Google Scholar]
  116. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. 116.  1999. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4:915–24 [Google Scholar]
  117. Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E. 117.  2006. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174:593–604 [Google Scholar]
  118. Weis S, Shintani S, Weber A, Kirchmair R, Wood M. 118.  et al. 2004. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J. Clin. Investig. 113:885–94 [Google Scholar]
  119. Gavard J, Gutkind JS. 119.  2006. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell Biol. 8:1223–34 [Google Scholar]
  120. Hebda JK, Leclair HM, Azzi S, Roussel C, Scott MG. 120.  et al. 2013. The C-terminus region of β-arrestin1 modulates VE-cadherin expression and endothelial cell permeability. Cell Commun. Signal.: CCS 11:37 [Google Scholar]
  121. Franco CA, Mericskay M, Parlakian A, Gary-Bobo G, Gao-Li J. 121.  et al. 2008. Serum response factor is required for sprouting angiogenesis and vascular integrity. Dev. Cell 15:448–61 [Google Scholar]
  122. Potter MD, Barbero S, Cheresh DA. 122.  2005. Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and β-catenin and maintains the cellular mesenchymal state. J. Biol. Chem. 280:31906–12 [Google Scholar]
  123. Orsenigo D, Giampietro C, Ferrari A, Corada M, Galaup A. 123.  et al. 2012. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat. Commun. 3:1208 [Google Scholar]
  124. Wallez Y, Cand F, Cruzalegui F, Wernstedt C, Souchelnytskyi S. 124.  et al. 2007. Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 26:1067–77 [Google Scholar]
  125. Turowski P, Martinelli R, Crawford R, Wateridge D, Papageorgiou AP. 125.  et al. 2008. Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. J. Cell Sci. 121:29–37 [Google Scholar]
  126. Spring K, Chabot C, Langlois S, Lapointe L, Trinh NT. 126.  et al. 2012. Tyrosine phosphorylation of DEP-1/CD148 as a mechanism controlling Src kinase activation, endothelial cell permeability, invasion, invasion, and capillary formation. Blood 120:2745–56 [Google Scholar]
  127. Schulte D, Kuppers V, Dartsch N, Broermann A, Li H. 127.  et al. 2011. Stabilizing the VE-cadherin–catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J. 30:4157–70 [Google Scholar]
  128. Gavard J, Patel V, Gutkind JS. 128.  2008. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev. Cell 14:25–36 [Google Scholar]
  129. Eliceiri BP, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. 129.  1999. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4:915–24 [Google Scholar]
  130. Adam AP, Sharenko AL, Pumiglia K, Vincent PA. 130.  2010. Src-induced tyrosine phosphorylation of VE-cadherin is not sufficient to decrease barrier function of endothelial monolayers. J. Biol. Chem. 285:7045–55 [Google Scholar]
  131. Zhao X, Peng X, Shaogang S, Park AYJ, Guan JL. 131.  2010. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. J. Cell Biol 189:955–65 [Google Scholar]
  132. Wojciak-Stothard B, Ridley AJ. 132.  2002. Rho GTPases and the regulation of endothelial permeability. Vasc. Pharmacol. 39:187–99 [Google Scholar]
  133. Wójciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ. 133.  2001. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J. Cell Sci. 114:1343–55 [Google Scholar]
  134. Gaengel K, Niaudet C, Hagikura K, Siemsen BL, Muhl L. 134.  et al. 2012. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev. Cell 23:587–99 [Google Scholar]
  135. Xiao K, Garner J, Buckley KM, Vincent PA, Chiasson CM. 135.  et al. 2005. p120-catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol. Biol. Cell 16:5141–51 [Google Scholar]
  136. Vandenbroucke St Amant E, Tauseef M, Vogel SM, Gao XP. 136.  et al. 2012. PKCα activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity. Circ. Res. 111:739–49 [Google Scholar]
  137. Li R, Ren M, Chen N, Luo M, Zhang Z, Wu J. 137.  2012. Vitronectin increases vascular permeability by promoting VE-cadherin internalization at cell junctions. PLOS ONE 7:e37195 [Google Scholar]
  138. Yoshioka K, Yoshida K, Cui H, Wakayama T, Takuwa N. 138.  et al. 2012. Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat. Med. 18:1560–69 [Google Scholar]
  139. Chiasson CM, Wittich KB, Vincent PA, Faundez V, Kowalczyk AP. 139.  2009. p120-catenin inhibits VE-cadherin internalization through a Rho-independent mechanism. Mol. Biol. Cell 20:1970–80 [Google Scholar]
  140. Gavard J, Hou X, Qu Y, Masedunskas A, Martin D. 140.  et al. 2009. A role for a CXCR2/phosphatidylinositol 3-kinase γ signaling axis in acute and chronic vascular permeability. Mol. Cell. Biol. 29:2469–80 [Google Scholar]
  141. Cain RJ, Vanhaesebroeck B, Ridley AJ. 141.  2010. The PI3K p110α isoform regulates endothelial adherens junctions via Pyk2 and Rac1. J. Cell Biol. 188:863–76 [Google Scholar]
  142. Jones CA, London NR, Chen H, Park KW, Sauvaget D. 142.  et al. 2008. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat. Med. 14:448–53 [Google Scholar]
  143. Cowan CE, Kohler EE, Dugan TA, Mirza MK, Malik AB. 143.  et al. 2010. Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function. Circ. Res 107:959–66 [Google Scholar]
  144. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F. 144.  et al. 2008. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat. Cell Biol. 10:923–34 [Google Scholar]
  145. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A. 145.  et al. 2008. Wnt/β-catenin signaling controls development of the blood–brain barrier. J. Cell Biol 183:409–17 [Google Scholar]
  146. Oas RG, Xiao K, Summers S, Wittich KB, Chiasson CM. 146.  et al. 2010. p120-Catenin is required for mouse vascular development. Circ. Res. 106:941–51 [Google Scholar]
  147. Young JA, Ting KK, Li J, Moller T, Dunn L. 147.  et al. 2013. Regulation of vascular leak and recovery from ischemic injury by general and VE-cadherin-restricted miRNA antagonists of miR-27. Blood 122:2911–19 [Google Scholar]
  148. Muramatsu F, Kidoya H, Naito H, Sakimoto S, Takakura N. 148.  2013. microRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin. Oncogene 32:414–21 [Google Scholar]
  149. Lalwani MK, Sharma M, Singh AR, Chauhan RK, Patowary A. 149.  et al. 2012. Reverse genetics screen in zebrafish identifies a role of miR-142α-3p in vascular development and integrity. PLOS ONE 7:e52588 [Google Scholar]
  150. Hla T. 150.  2004. Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol. 15:513–20 [Google Scholar]
  151. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T. 151.  2007. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler. Thromb. Vasc. Biol. 27:1312–18 [Google Scholar]
  152. Zhao J, Singleton PA, Brown ME, Dudek SM, Garcia JG. 152.  2009. Phosphotyrosine protein dynamics in cell membrane rafts of sphingosine-1-phosphate-stimulated human endothelium: role in barrier enhancement. Cell. Signal. 21:1945–60 [Google Scholar]
  153. Belvitch P, Dudek SM. 153.  2012. Role of FAK in S1P-regulated endothelial permeability. Microvasc. Res. 83:22–30 [Google Scholar]
  154. Mullershausen F, Craveiro LM, Shin Y, Cortes-Cros M, Bassilana F. 154.  et al. 2007. Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J. Neurochem. 102:1161–66 [Google Scholar]
  155. Pham THM, Okada T, Matloubian M, Lo C, Cyster JG. 155.  2008. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity 28:122–33 [Google Scholar]
  156. Landeen LK, Dederko DA, Kondo CS, Hu BS, Aroonsakool N. 156.  et al. 2008. Mechanisms of the negative inotropic effects of sphingosine-1-phosphate on adult mouse ventricular myocytes. Am. J. Physiol. Heart. Circ. Physiol 294:H736–49 [Google Scholar]
  157. Nakajima N, Cavalli AL, Biral D, Glembotski CC, McDonough PM. 157.  et al. 2000. Expression and characterization of Edg-1 receptors in rat cardiomyocytes: calcium deregulation in response to sphingosine 1-phosphate. Eur. J. Biochem 267:5679–86 [Google Scholar]
  158. Jung B, Obinata H, Galvani S, Mendelson K, Ding B. 158.  et al. 2012. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev. Cell 23:600–10 [Google Scholar]
  159. Igarashi J, Erwin PA, Dantas APV, Chen H, Michel T. 159.  2003. VEGF induces S1P1 receptors in endothelial cells: implications for cross-talk between sphingolipid and growth factor receptors. PNAS 100:10664–69 [Google Scholar]
  160. Paik JH, Chae S, Lee MJ, Thangada S, Hla T. 160.  2001. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of αvβ3- and β1-containing integrins. J. Biol. Chem. 276:11830–37 [Google Scholar]
  161. Benaud C, Oberst M, Hobson JP, Spiegel S, Dickson RB, Lin CY. 161.  2002. Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. J. Biol. Chem. 277:10539–46 [Google Scholar]
  162. Feistritzer C, Riewald M. 162.  2005. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105:3178–84 [Google Scholar]
  163. Mizuguishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL. 163.  2007. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol 25:11113–21 [Google Scholar]
  164. Kimua A, Ohmori T, Ohkawa R, Madoiwa S, Mimuro J. 164.  et al. 2007. Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells 25:115–24 [Google Scholar]
  165. McGuire PG, Rangasamy S, Maestas J, Das A. 165.  2011. Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier. Arterioscler. Thromb. Vasc. Biol. 31:e107–15 [Google Scholar]
  166. Wei SH, Rosen H, Matheu MP, Sanna MG, Wang SK. 166.  et al. 2005. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat. Immunol. 6:1228–35 [Google Scholar]
  167. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX. 167.  et al. 2000. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Investig. 106:951–61 [Google Scholar]
  168. Means CK, Xiao CY, Li Z, Zhang T, Omens JH, Ishii I. 168.  2007. Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 292:H2944–51 [Google Scholar]
  169. Kono M, Belyantseva IA, Skoura A, Frolenkov GI, Starost MF. 169.  et al. 2007. Deafness and stria vascularis defects in S1P2 receptor-null mice. J. Biol. Chem. 282:10690–96 [Google Scholar]
  170. Herr DR, Grillet N, Schwander M, Rivera R, Muller U, Chun J. 170.  2007. Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J. Neurosci. 27:1474–78 [Google Scholar]
  171. Gu Y, Forostyan T, Sabbadini R, Rosenblatt J. 171.  2011. Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway. J. Cell Biol. 193:667–76 [Google Scholar]
  172. Im DS, Tomura H, Tobo M, Sato K, Okajima F. 172.  2004. Enhancement of sphingosine 1-phosphate-induced phospholipase C activation during G0-G1 transition in rat hepatocytes. J. Pharmacol. Sci. 95:283–90 [Google Scholar]
  173. Jolly PS, Rosenfeldt HM, Milstien S, Spiegel S. 173.  2002. The roles of sphingosine-1-phosphate in asthma. Mol. Immunol. 38:1239–45 [Google Scholar]
  174. Takashima SI, Sugimoto N, Takuwa N, Okamoto Y, Yoshioka K. 174.  et al. 2008. G12/13 and Gq mediate S1P2-induced inhibition of Rac and migration in vascular smooth muscle in a manner dependent on Rho but not Rho kinase. Cardiovasc. Res. 79:689–97 [Google Scholar]
  175. Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T. 175.  2007. Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J. Clin. Investig. 117:2506–16 [Google Scholar]
  176. Thurston G, Suri C, Smith K, McClain J, Sato TN. 176.  et al. 1999. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–14 [Google Scholar]
  177. Mammoto T, Parikh SM, Mammoto A, Gallagher D, Chan B. 177.  et al. 2007. Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. J. Biol. Chem. 282:23910–18 [Google Scholar]
  178. Baffert F, Le T, Thurston G, McDonald DM. 178.  2006. Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am. J. Physiol. Heart Circ. Physiol. 290:H107–18 [Google Scholar]
  179. Lee SW, Kim WJ, Jun HO, Choi YK, Kim KW. 179.  2009. Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int. J. Mol. Med. 23:279–84 [Google Scholar]
  180. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG. 180.  2005. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell Sci. 118:771–80 [Google Scholar]
  181. Nag S, Papneja T, Venugopalan R, Stewart DJ. 181.  2005. Increased angiopoietin2 expression is associated with endothelial apoptosis and blood-brain barrier breakdown. Lab. Investig. J. Tech. Methods Pathol. 85:1189–98 [Google Scholar]
  182. Broman MT, Kouklis P, Gao X, Ramchandran R, Neamu RF. 182.  et al. 2006. Cdc42 regulates adherens junction stability and endothelial permeability by inducing alpha-catenin interaction with the vascular endothelial cadherin complex. Circ. Res. 98:73–80 [Google Scholar]
  183. Stockton RA, Schaefer E, Schwartz MA. 183.  2004. p21-activated kinase regulates endothelial permeability through modulation of contractility. J. Biol. Chem. 279:46621–30 [Google Scholar]
  184. Stockton R, Reutershan J, Scott D, Sanders J, Ley K, Schwartz MA. 184.  2007. Induction of vascular permeability: βPIX and GIT1 scaffold the activation of extracellular signal-regulated kinase by PAK. Mol. Biol. Cell 18:2346–55 [Google Scholar]
  185. Orr AW, Stockton R, Simmers MB, Sanders JM, Sarembock IJ. 185.  et al. 2007. Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. J. Cell Biol. 176:719–27 [Google Scholar]
  186. Eriksson A, Cao R, Roy J, Tritsaris K, Wahlestedt C. 186.  et al. 2003. Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability. Circulation 107:1532–38 [Google Scholar]
  187. ten Dijke P, Arthur HM. 187.  2007. Extracellular control of TGFβ signalling in vascular development and disease. Nat. Rev. Mol. Cell Biol. 8:857–69 [Google Scholar]
  188. Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA. 188.  1989. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. PNAS 86:4544–48 [Google Scholar]
  189. Hirschi KK, Rohovsky SA, D'Amore PA. 189.  1998. PDGF, TGF-β, and heterotypic cell–cell interactions mediate endothelial cell–induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141:805–14 [Google Scholar]
  190. Neubauer K, Kruger M, Quondamatteo F, Knittel T, Saile B, Ramadori G. 190.  1999. Transforming growth factor-β1 stimulates the synthesis of basement membrane proteins laminin, collagen type IV and entactin in rat liver sinusoidal endothelial cells. J. Hepatol. 31:692–702 [Google Scholar]
  191. Walshe TE, Saint-Geniez M, Maharaj AS, Sekiyama E, Maldonado AE, D'Amore PA. 191.  2009. TGF-β is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLOS ONE 4:e5149 [Google Scholar]
  192. Jerkic M, Letarte M. 192.  2015. Increased endothelial cell permeability in endoglin-deficient cells. FASEB J. 293678–88
  193. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G. 193.  et al. 2004. Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO J. 23:4018–28 [Google Scholar]
  194. van Meeteren LA, Goumans MJ, ten Dijke P. 194.  2011. TGF-β receptor signaling pathways in angiogenesis; emerging targets for anti-angiogenesis therapy. Curr. Pharm. Biotechnol. 12:2108–20 [Google Scholar]
  195. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL. 195.  et al. 2008. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77 [Google Scholar]
  196. Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D'Amore PA. 196.  2003. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev. Biol. 264:275–88 [Google Scholar]
  197. Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N. 197.  et al. 1994. Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J. Biol. Chem. 269:6271–74 [Google Scholar]
  198. Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y. 198.  et al. 1997. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14:2475–83 [Google Scholar]
  199. Simionescu N, Simionescu M, Palade GE. 199.  1978. Open junctions in the endothelium of the postcapillary venules of the diaphragm. J. Cell Biol. 79:27–44 [Google Scholar]
  200. Palade GE, Simionescu M, Simionescu N. 200.  1979. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol. Scand. Suppl. 463:11–32 [Google Scholar]
  201. Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB. 201.  1999. VEGF-induced permeability increase is mediated by caveolae. Investig. Ophthalmol. Vis. Sci. 40:157–67 [Google Scholar]
  202. Garcia CM, Darland DC, Massingham LJ, D'Amore PA. 202.  2004. Endothelial cell–astrocyte interactions and TGFβ are required for induction of blood–neural barrier properties. Dev. Brain Res. 152:25–38 [Google Scholar]
  203. Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I. 203.  1992. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. PNAS 89:7919–23 [Google Scholar]
  204. Miles AA, Miles EM. 204.  1952. Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J. Physiol. 118:228–57 [Google Scholar]
  205. Nagy JA, Feng D, Vasile E, Wong WH, Shih SC, Dvorak AM, Dvorak HF. 205.  2006. Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab. Investig. J. Tech. Methods Pathol. 86:767–80 [Google Scholar]
  206. Nagy JA, Shih SC, Wong WH, Dvorak AM, Dvorak HF. 206.  2008. Chapter 3. The adenoviral vector angiogenesis/lymphangiogenesis assay. Methods Enzymol. 444:43–64 [Google Scholar]
  207. Thurston G, Baluk P, Hirata A, McDonald DM. 207.  1996. Permeability-related changes revealed at endothelial cell borders in inflamed venules by lectin binding. Am. J. Physiol. 271:H2547–62 [Google Scholar]
  208. Egawa G, Nakamizo S, Natsuaki Y, Doi H, Miyachi Y, Kabashima K. 208.  2013. Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci. Rep. 3:1932 [Google Scholar]
  209. Carmeliet P. 209.  2003. Angiogenesis in health and disease. Nat. Med. 9:653–60 [Google Scholar]
  210. Clarke JM, Hurwitz HI. 210.  2013. Understanding and targeting resistance to anti-angiogenic therapies. J. Gastrointest. Oncol. 4:253–63 [Google Scholar]
  211. Eelen G, de Zeeuw P, Simons M, Carmeliet P. 211.  2015. Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 116:1231–44 [Google Scholar]
  212. Welti J, Loges S, Dimmeler S, Carmeliet P. 212.  2013. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Investig. 123:3190–200 [Google Scholar]
  213. Jain RK. 213.  2014. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26:605–22 [Google Scholar]
  214. Dvorak HF, Harvey VS, Estrella P, Brown LF, McDonagh J, Dvorak AM. 214.  1987. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab. Investig. J. Tech. Methods Pathol. 57:673–86 [Google Scholar]
  215. Ananthnarayan S, Bahng J, Roring J, Nghiemphu P, Lai A, Cloughesy T, Pope WB. 215.  2008. Time course of imaging changes of GBM during extended bevacizumab treatment. J. Neuro-Oncol. 88:339–47 [Google Scholar]
  216. Numnum TM, Rocconi RP, Whitworth J, Barnes MN. 216.  2006. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian carcinoma. Gynecol. Oncol. 102:425–28 [Google Scholar]
  217. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J. 217.  et al. 2004. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350:2335–42 [Google Scholar]
  218. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH. 218.  et al. 2006. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355:2542–50 [Google Scholar]
  219. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S. 219.  et al. 2007. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356:125–34 [Google Scholar]
  220. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM. 220.  et al. 2007. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356:115–24 [Google Scholar]
  221. Kadenhe-Chiweshe A, Papa J, McCrudden KW, Frischer J, Bae JO. 221.  et al. 2008. Sustained VEGF blockade results in microenvironmental sequestration of VEGF by tumors and persistent VEGF receptor-2 activation. Mol. Cancer Res.: MCR 6:1–9 [Google Scholar]
  222. Byrne AT, Ross L, Holash J, Nakanishi M, Hu L. 222.  et al. 2003. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 9:5721–28 [Google Scholar]
  223. Garcia A, Singh H. 223.  2013. Bevacizumab and ovarian cancer. Ther. Adv. Med. Oncol. 5:133–41 [Google Scholar]
  224. Leow CC, Coffman K, Inigo I, Breen S, Czapiga M. 224.  et al. 2012. MEDI3617, a human anti-angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models. Int. J. Oncol. 40:1321–30 [Google Scholar]
  225. Goel S, Gupta N, Walcott BP, Snuderl M, Kesler CT. 225.  et al. 2013. Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J. Natl. Cancer Inst. 105:1188–201 [Google Scholar]
  226. Wang H, Song S, Kou G, Li B, Zhang D. 226.  et al. 2007. Treatment of hepatocellular carcinoma in a mouse xenograft model with an immunotoxin which is engineered to eliminate vascular leak syndrome. Cancer Immunol. Immunother.: CII 56:1775–83 [Google Scholar]
  227. Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K. 227.  et al. 2007. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke J. Cereb. Circ. 38:3289–91 [Google Scholar]
  228. Esser S, Lampugnani MG, Corada M, Dejana E, Risau W. 228.  1998. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci. 111:Pt. 131853–65 [Google Scholar]
  229. Miyahara T, Hamanaka K, Weber DS, Drake DA, Anghelescu M, Parker JC. 229.  2007. Phosphoinositide 3-kinase, Src, and Akt modulate acute ventilation-induced vascular permeability increases in mouse lungs. Am. J. Physiol. Lung Cell. Mol. Physiol. 293:L11–21 [Google Scholar]
  230. Simorre-Pinatel V, Guerrin M, Chollet P, Penary M, Clamens S. 230.  et al. 1994. Vasculotropin-VEGF stimulates retinal capillary endothelial cells through an autocrine pathway. Investig. Ophthalmol. Vis. Sci. 35:3393–400 [Google Scholar]
  231. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H. 231.  et al. 1995. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. PNAS 92:10457–61 [Google Scholar]
  232. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. 232.  1995. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. PNAS 92:905–9 [Google Scholar]
  233. Kergoat H, Herard ME, Lemay M. 233.  2006. RGC sensitivity to mild systemic hypoxia. Investig. Ophthalmol. Vis. Sci. 47:5423–27 [Google Scholar]
  234. Seko Y, Fujikura H, Pang J, Tokoro T, Shimokawa H. 234.  1999. Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Investig. Ophthalmol. Vis. Sci. 40:3287–91 [Google Scholar]
  235. Mousa SA, Lorelli W, Campochiaro PA. 235.  1999. Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells. J. Cell. Biochem. 74:135–43 [Google Scholar]
  236. Miller JW, Adamis AP, Shima DT, D'Amore PA, Moulton RS. 236.  et al. 1994. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145:574–84 [Google Scholar]
  237. Shima DT, Adamis AP, Ferrara N, Yeo KT, Yeo TK. 237.  et al. 1995. Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol. Med. 1:182–93 [Google Scholar]
  238. Mintz-Hittner HA, Kennedy KA, Chuang AZ. 238.  2011. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N. Engl. J. Med. 364:603–15 [Google Scholar]
  239. Tornquist P, Alm A, Bill A. 239.  1990. Permeability of ocular vessels and transport across the blood-retinal-barrier. Eye 4:Pt. 2303–9 [Google Scholar]
  240. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK. 240.  et al. 2006. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355:1419–31 [Google Scholar]
  241. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E. 241.  et al. 2008. Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLOS ONE 3:e3554 [Google Scholar]
  242. Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D'Amore PA. 242.  2009. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. PNAS 106:18751–56 [Google Scholar]
  243. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B. 243.  et al. 2006. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290:H560–76 [Google Scholar]
  244. Peters S, Heiduschka P, Julien S, Ziemssen F, Fietz H. 244.  et al. 2007. Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab. Am. J. Ophthalmol. 143:995–1002 [Google Scholar]
  245. Ford KM, Saint-Geniez M, Walshe T, Zahr A, D'Amore PA. 245.  2011. Expression and role of VEGF in the adult retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 52:9478–87 [Google Scholar]
  246. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A. 246.  et al. 2004. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol. 165:35–52 [Google Scholar]
  247. Vinores SA. 247.  2006. Pegaptanib in the treatment of wet, age-related macular degeneration. Int. J. Nanomed. 1:263–68 [Google Scholar]
  248. Lowe J, Araujo J, Yang J, Reich M, Oldendorp A. 248.  et al. 2007. Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo. Exp. Eye Res. 85:425–30 [Google Scholar]
/content/journals/10.1146/annurev-pathol-012615-044506
Loading
/content/journals/10.1146/annurev-pathol-012615-044506
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error