1932

Abstract

The increasing availability of brain imaging technologies has led to intense neuroscientific inquiry into the human brain. Studies often investigate brain function related to emotion, cognition, language, memory, and responses to numerous other external stimuli, as well as resting-state brain function. Brain imaging studies also attempt to determine the functional or structural basis for psychiatric or neurological disorders and to examine the responses of these disorders to treatment. Neuroimaging is a highly interdisciplinary field, and statistics plays a critical role in establishing rigorous methods to extract information and to quantify evidence for formal inferences. Neuroimaging data present numerous challenges for statistical analysis, including the vast amounts of data collected from each individual and the complex temporal and spatial dependencies present in the data. I briefly provide background on various types of neuroimaging data and analysis objectives that are commonly targeted in the field. I also present a survey of existing methods aimed at these objectives and identify particular areas offering opportunities for future statistical contribution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-022513-115611
2014-01-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/statistics/1/1/annurev-statistics-022513-115611.html?itemId=/content/journals/10.1146/annurev-statistics-022513-115611&mimeType=html&fmt=ahah

Literature Cited

  1. Adler RJ. 1981. The Geometry of Random Fields New York: Wiley
  2. Balslev D, Nielsen FA, Frutiger SA, Sidtis JJ, Christiansen TB. et al. 2002. Cluster analysis of activity-time series in motor learning. Hum. Brain Mapp. 15:3135–45 [Google Scholar]
  3. Baumgartner R, Ryner L, Richter W, Summers R, Jarmasz M, Somorjai R. 2000. Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering versus principal component analysis. Magn. Reson. Imaging 18:189–94 [Google Scholar]
  4. Baune A, Sommer FT, Erb M, Wildgruber D, Kardatzki B. et al. 1999. Dynamical cluster analysis of cortical fMRI activation. NeuroImage 9:5477–89 [Google Scholar]
  5. Beckmann CF, Smith SM. 2004. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23:2137–52 [Google Scholar]
  6. Beckmann CF, Smith SM. 2005. Tensorial extensions of independent component analysis for multisubject fMRI analysis. NeuroImage 25:1294–311 [Google Scholar]
  7. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. 2007. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?. NeuroImage 34:1144–55 [Google Scholar]
  8. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG. et al. 2003. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50:51077–88 [Google Scholar]
  9. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57:1289–300 [Google Scholar]
  10. Bowman FD. 2005. Spatio-temporal modeling of localized brain activity. Biostatistics 6:4558–75 [Google Scholar]
  11. Bowman FD. 2007. Spatiotemporal models for region of interest analyses of functional neuroimaging data. J. Am. Stat. Assoc. 102:478442–53 [Google Scholar]
  12. Bowman FD, Caffo B, Bassett SS, Kilts C. 2008. A Bayesian hierarchical framework for spatial modeling of fMRI data. NeuroImage 39:1146–56 [Google Scholar]
  13. Bowman FD, Patel R. 2004. Identifying spatial relationships in neural processing using a multiple classification approach. NeuroImage 23:1260–68 [Google Scholar]
  14. Bowman FD, Patel R, Lu C. 2004. Methods for detecting functional classifications in neuroimaging data. Hum. Brain Mapp. 23:2109–19 [Google Scholar]
  15. Bowman FD, Zhang L, Derado G, Chen S. 2012. Determining functional connectivity using fMRI data with diffusion-based anatomical weighting. NeuroImage 62:31769–79 [Google Scholar]
  16. Bullmore E, Brammer M, Williams SC, Rabe-Hesketh S, Janot N. et al. 1996. Statistical methods of estimation and inference for functional MR image analysis. Magn. Reson. Med. 35:2261–77 [Google Scholar]
  17. Bullmore E, Fadili J, Breakspear M, Salvador R, Suckling J, Brammer M. 2003. Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Stat. Methods Med. Res. 12:5375–99 [Google Scholar]
  18. Bullmore E, Fadili J, Maxim V, Sendur L, Whitcher B. et al. 2004. Wavelets and functional magnetic resonance imaging of the human brain. NeuroImage 23:Suppl. 1S234–49 [Google Scholar]
  19. Bullmore E, Long C, Suckling J, Fadili J, Calvert G. et al. 2001. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum. Brain Mapp. 12:261–78 [Google Scholar]
  20. Bunea F, She Y, Ombao H, Gongvatana A, Devlin K, Cohen R. 2011. Penalized least squares regression methods and applications to neuroimaging. NeuroImage 55:41519–27 [Google Scholar]
  21. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. 2001. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14:3140–51 [Google Scholar]
  22. Casanova R, Hsu FC, Espeland MA, Weiner M, Aisen P. et al. 2012. Classification of structural MRI images in Alzheimer's disease from the perspective of ill-posed problems. PLoS ONE 7:10e44877 [Google Scholar]
  23. Cauda F, Cavanna AE, D'agata F, Sacco K, Duca S, Geminiani GC. 2011. Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J. Cogn. Neurosci. 23:102864–77 [Google Scholar]
  24. Chen S, Bowman FD. 2011. A novel support vector classifier for longitudinal high-dimensional data and its application to neuroimaging data. Stat. Anal. Data Min. 4:6604–11 [Google Scholar]
  25. Chu C, Ni Y, Tan G, Saunders CJ, Ashburner J. 2011. Kernel regression for fMRI pattern prediction. NeuroImage 56:2662–73 [Google Scholar]
  26. Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K. 2002. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn. Reson. Imaging 20:4305–17 [Google Scholar]
  27. Cox DD, Savoy RL. 2003. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage 19:2 Pt. 1261–70 [Google Scholar]
  28. Derado G, Bowman FD, Kilts CD. 2010. Modeling the spatial and temporal dependence in fMRI data. Biometrics 66:3949–57 [Google Scholar]
  29. Derado G, Bowman FD, Zhang L. 2012. Predicting brain activity using a Bayesian spatial model. Stat. Methods Med. Res. 22:382–97 [Google Scholar]
  30. Doehrmann O, Ghosh SS, Polli FE, Reynolds GO, Horn F. et al. 2013. Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging. JAMA Psychiatry 70:187–97 [Google Scholar]
  31. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD. et al. 2010. Prediction of individual brain maturity using fMRI. Science 329:59971358–61 [Google Scholar]
  32. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. 2009. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30:92907–26 [Google Scholar]
  33. Eloyan A, Crainiceanu CM, Caffo BS. 2013. Likelihood-based population independent component analysis. Biostatistics 14:3514–27 [Google Scholar]
  34. Fadili MJ, Ruan S, Bloyet D, Mazoyer B. 2000. A multistep unsupervised fuzzy clustering analysis of fMRI time series. Hum. Brain Mapp. 10:4160–78 [Google Scholar]
  35. Fadili MJ, Ruan S, Bloyet D, Mazoyer B. 2001. On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Med. Image Anal. 5:155–67 [Google Scholar]
  36. Filzmoser P, Baumgartner R, Moser E. 1999. A hierarchical clustering method for analyzing functional MR images. Magn. Reson. Imaging 17:6817–26 [Google Scholar]
  37. Friston K. 2009. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 7:2e33 [Google Scholar]
  38. Friston KJ. 2002. Bayesian estimation of dynamical systems: an application to fMRI. NeuroImage 16:2513–30 [Google Scholar]
  39. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. 1993. Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13:15–14 [Google Scholar]
  40. Friston KJ, Harrison L, Penny W. 2003. Dynamic causal modelling. NeuroImage 19:41273–302 [Google Scholar]
  41. Friston KJ, Holmes AP, Poline J-B, Grasby PJ, Williams SCR. et al. 1995. Analysis of fMRI time-series revisited. NeuroImage 2:145–53 [Google Scholar]
  42. Genovese CR, Lazar NA, Nichols T. 2002. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15:4870–78 [Google Scholar]
  43. Goutte C, Hansen LK, Liptrot MG, Rostrup E. 2001. Feature-space clustering for fMRI meta-analysis. Hum. Brain Mapp. 13:3165–83 [Google Scholar]
  44. Goutte C, Toft P, Rostrup E, Nielsen F, Hansen LK. 1999. On clustering fMRI time series. NeuroImage 9:3298–310 [Google Scholar]
  45. Granger C. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–38 [Google Scholar]
  46. Guo Y. 2011. A general probabilistic model for group independent component analysis and its estimation methods. Biometrics 67:41532–42 [Google Scholar]
  47. Guo Y, Bowman FD, Kilts C. 2008. Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia. Hum. Brain Mapp. 29:91092–109 [Google Scholar]
  48. Guo Y, Pagnoni G. 2008. A unified framework for group independent component analysis for multi-subject fMRI data. NeuroImage 42:31078–93 [Google Scholar]
  49. Hendelman W. 2005. Atlas of Functional Neuroanatomy Boca Raton, FL: CRC, 2nd ed..
  50. Herculano-Houzel S. 2012. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. USA 109:Suppl. 110661–68 [Google Scholar]
  51. Kang H, Ombao H, Linkletter C, Long N, Badre D. 2012. Spatio-spectral mixed effects model for functional magnetic resonance imaging data. J. Am. Stat. Assoc. 107:498568–77 [Google Scholar]
  52. Kang J, Johnson TD, Nichols TE, Wager TD. 2011. Meta analysis of functional neuroimaging data via Bayesian spatial point processes. J. Am. Stat. Assoc. 106:493124–34 [Google Scholar]
  53. Katanoda K, Matsuda Y, Sugishita M. 2002. A spatio-temporal regression model for the analysis of functional MRI data. NeuroImage 17:31415–28 [Google Scholar]
  54. LaConte S, Strother S, Cherkassky V, Anderson J, Hu X. 2005. Support vector machines for temporal classification of block design fMRI data. NeuroImage 26:2317–29 [Google Scholar]
  55. Marquand A, Howard M, Brammer M, Chu C, Coen S, Mourão-Miranda J. 2010. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage 49:32178–89 [Google Scholar]
  56. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS. et al. 1998. Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 6:3160–88 [Google Scholar]
  57. Michel V, Eger E, Keribin C, Thirion B. 2011a. Multiclass sparse Bayesian regression for fMRI-based prediction. Int. J. Biomed. Imaging 2011:350838 [Google Scholar]
  58. Michel V, Gramfort A, Varoquaux G, Eger E, Thirion B. 2011b. Total variation regularization for fMRI-based prediction of behavior. IEEE Trans. Med. Imaging 30:71328–40 [Google Scholar]
  59. Mourão-Miranda J, Bokde ALW, Born C, Hampel H, Stetter M. 2005. Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. NeuroImage 28:4980–95 [Google Scholar]
  60. Nalatore H, Ding M, Rangarajan G. 2007. Mitigating the effects of measurement noise on Granger causality. Phys. Rev. E 75:3 Pt. 1031123 [Google Scholar]
  61. Natl. Inst. Health (NIH) 2009. The Human Connectome Project. http://www.neuroscienceblueprint.nih.gov/connectome
  62. Nichols T, Hayasaka S. 2003. Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12:5419–46 [Google Scholar]
  63. Nichols TE, Holmes AP. 2002. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15:11–25 [Google Scholar]
  64. Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N. et al. 2008. Robustly estimating the flow direction of information in complex physical systems. Phys. Rev. Lett. 100:234101 [Google Scholar]
  65. Ombao H, Shao X, Rykhlevskaia E, Fabiani M, Gratton G. 2008. Spatio-spectral analysis of brain signals. Stat. Sin. 18:1465–82 [Google Scholar]
  66. Pagnoni G, Cekic M, Guo Y. 2008. “Thinking about not thinking”: neural correlates of conceptual processing during Zen meditation. PLoS ONE 3:9e3083 [Google Scholar]
  67. Patel RS, Bowman FD, Rilling JK. 2006. A Bayesian approach to determining connectivity of the human brain. Hum. Brain Mapp. 27:3267–76 [Google Scholar]
  68. Penny WD, Trujillo-Barreto NJ, Friston KJ. 2005. Bayesian fMRI time series analysis with spatial priors. NeuroImage 24:2350–62 [Google Scholar]
  69. Purdon PL, Solo V, Weisskoff RM, Brown EN. 2001. Locally regularized spatiotemporal modeling and model comparison for functional MRI. NeuroImage 14:4912–23 [Google Scholar]
  70. Reiss PT, Schwartzman A, Lu F, Huang L, Proal E. 2012. Paradoxical results of adaptive false discovery rate procedures in neuroimaging studies. NeuroImage 63:41833–40 [Google Scholar]
  71. Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT. 2010a. Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum. Brain Mapp. 31:2173–84 [Google Scholar]
  72. Robinson LF, Wager TD, Lindquist MA. 2010b. Change point estimation in multi-subject fMRI studies. NeuroImage 49:21581–92 [Google Scholar]
  73. Roebroeck A, Formisano E, Goebel R. 2005. Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage 25:1230–42 [Google Scholar]
  74. Rowe DB. 2005. Modeling both the magnitude and phase of complex-valued fMRI data. NeuroImage 25:41310–24 [Google Scholar]
  75. Simpson SL, Bowman FD, Laurienti PJ. 2013. Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat. Surv. 71–36
  76. Simpson SL, Hayasaka S, Laurienti PJ. 2011. Exponential random graph modeling for complex brain networks. PLoS ONE 6:5e20039 [Google Scholar]
  77. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF. et al. 2011. Network modelling methods for FMRI. NeuroImage 54:2875–91 [Google Scholar]
  78. Soc. Neurosci 2012. Brain Facts: A Primer on the Brain and Nervous System. Washington, DC: Soc. Neurosci. http://www.brainfacts.org/book [Google Scholar]
  79. Solo V. 2011. The dangers of Granger: what they didn't tell you about Granger causality (in fMRI). Presented at Annu. Meet. Org. Hum. Brain Mapp., 17th, June 26–30, Quebec City. http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/presentations/ohbm2011/skeptical/Solo_GrangerDanger.pdf [Google Scholar]
  80. Somorjai RL, Jarmasz M. 2003. Exploratory analysis of fMRI data by fuzzy clustering—philosophy, strategy, tactics, and implementation. Exploratory Analysis and Data Modeling in Functional Neuroimaging FT Sommer, A Wichert 17–42 Cambridge, MA: MIT Press [Google Scholar]
  81. Stanberry L, Nandy R, Cordes D. 2003. Cluster analysis of fMRI data using dendrogram sharpening. Hum. Brain Mapp. 20:4201–19 [Google Scholar]
  82. Strother SC. 2006. Evaluating fMRI preprocessing pipelines. IEEE Eng. Med. Biol. Mag. 25:227–41 [Google Scholar]
  83. Tiao G, Wei W. 1976. Effect of temporal aggregation on the dynamic relationship of two time series variables. Biometrika 63:3513–23 [Google Scholar]
  84. Wei WWS. 1978. The effect of temporal aggregation on parameter estimation in distributed lag model. J. Econom. 8:2237–46 [Google Scholar]
  85. Weiss A. 1984. Systematic sampling and temporal aggregation in time series models. J. Econom. 26:3271–81 [Google Scholar]
  86. Woolrich MW, Behrens TE, Smith SM. 2004a. Constrained linear basis sets for HRF modelling using Variational Bayes. NeuroImage 21:41748–61 [Google Scholar]
  87. Woolrich MW, Jenkinson M, Brady JM, Smith SM. 2004b. Fully Bayesian spatio-temporal modeling of FMRI data. IEEE Trans. Med. Imaging 23:2213–31 [Google Scholar]
  88. Woolrich MW, Ripley BD, Brady M, Smith SM. 2001. Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage 14:61370–86 [Google Scholar]
  89. Worsley KJ, Andermann M, Koulis T, MacDonald D, Evans AC. 1999. Detecting changes in nonisotropic images. Hum. Brain Mapp. 8:2–398–101 [Google Scholar]
  90. Worsley KJ, Evans AC, Marrett S, Neelin P. 1992. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12:6900–18 [Google Scholar]
  91. Worsley KJ, Friston KJ. 1995. Analysis of fMRI time-series revisited—again. NeuroImage 2:3173–81 [Google Scholar]
  92. Worsley KJ, Liao CH, Aston J, Petre V, Duncan GH. et al. 2002. A general statistical analysis for fMRI data. NeuroImage 15:11–15 [Google Scholar]
  93. Xu L, Johnson TD, Nichols TE, Nee DE. 2009. Modeling inter-subject variability in fMRI activation location: a Bayesian hierarchical spatial model. Biometrics 65:41041–51 [Google Scholar]
  94. Zhang L, Agravat S, Derado G, Chen S, McIntosh BJ, Bowman FD. 2012. BSMac: a MATLAB toolbox implementing a Bayesian spatial model for brain activation and connectivity. J. Neurosci. Methods 204:1133–43 [Google Scholar]
  95. Zhu H, Li Y, Ibrahim JG, Shi X, An H. et al. 2009. Regression models for identifying noise sources in magnetic resonance images. J. Am. Stat. Assoc. 104:486623–37 [Google Scholar]
/content/journals/10.1146/annurev-statistics-022513-115611
Loading
/content/journals/10.1146/annurev-statistics-022513-115611
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error