1932

Abstract

Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060313-054942
2014-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-060313-054942.html?itemId=/content/journals/10.1146/annurev-earth-060313-054942&mimeType=html&fmt=ahah

Literature Cited

  1. Abernathy CO, Thomas DJ, Calderon RL. 2003. Health effects and risk assessment of arsenic. J. Nutr. 133:S1536–38 [Google Scholar]
  2. Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF. 2003. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol. Lett. 226:107–12 [Google Scholar]
  3. Ahmann D, Roberts AL, Krumholz LR, Morel FM. 1994. Microbe grows by reducing arsenic. Nature 371:750 [Google Scholar]
  4. Ajees AA, Marapakala K, Packianathan C, Sankaran B, Rosen BP. 2012. Structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation. Biochemistry 51:5476–85 [Google Scholar]
  5. Akkari KH, Frans RE, Lavy TL. 1986. Factors affecting degradation of MSMA in soil. Weed Sci. 34:781–88 [Google Scholar]
  6. Anderson GL, Williams J, Hille R. 1992. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J. Biol. Chem. 267:23674–82 [Google Scholar]
  7. Andreae MO. 1979. Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element. Limnol. Oceanogr. 24:440–52 [Google Scholar]
  8. Bhattacharjee H, Mukhopadhyay R, Thiyagarajan S, Rosen BP. 2008. Aquaglyceroporins: ancient channels for metalloids. J. Biol. 7:33 [Google Scholar]
  9. Bhattacharjee H, Rosen BP. 2007. Arsenic metabolism in prokaryotic and eukaryotic microbes. Molecular Microbiology of Heavy Metals DH Nies, S Silver 371–406 Berlin: Springer [Google Scholar]
  10. Bobrowicz P, Wysocki R, Owsianik G, Goffeau A, Ulaszewski S. 1997. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13:819–28 [Google Scholar]
  11. Brammer H, Ravenscroft P. 2009. Arsenic in groundwater: a threat to sustainable agriculture in South and South-East Asia. Environ. Int. 35:647–54 [Google Scholar]
  12. Burló F, Guijarro I, Carbonell-Barrachina AA, Valero D, Martínez-Sánchez F. 1999. Arsenic species: effects on and accumulation by tomato plants. J. Agric. Food Chem. 47:1247–53 [Google Scholar]
  13. Canfield DE, Rosing MT, Bjerrum C. 2006. Early anaerobic metabolisms. Philos. Trans. R. Soc. B 361:1819–34; discussion 35–36 [Google Scholar]
  14. Carlin A, Shi W, Dey S, Rosen BP. 1995. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J. Bacteriol. 177:981–86 [Google Scholar]
  15. Castillo R, Saier MH. 2010. Functional promiscuity of homologues of the bacterial ArsA ATPases. Int. J. Microbiol. 2010:187373 [Google Scholar]
  16. Castlehouse H, Smith C, Raab A, Deacon C, Meharg AA, Feldmann J. 2003. Biotransformation and accumulation of arsenic in soil amended with seaweed. Environ. Sci. Technol. 37:951–57 [Google Scholar]
  17. Chen CJ, Chen CW, Wu MM, Kuo TL. 1992. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer 66:888–92 [Google Scholar]
  18. Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP. 2013. Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl. Environ. Microbiol. 79:4493–95 [Google Scholar]
  19. Chen YC, Su HJ, Guo YL, Hsueh YM, Smith TJ. et al. 2003. Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes Control 14:303–10 [Google Scholar]
  20. Cortinas I, Field JA, Kopplin M, Garbarino JR, Gandolfi AJ, Sierra-Alvarez R. 2006. Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids. Environ. Sci. Technol. 40:2951–57 [Google Scholar]
  21. Covey AK, Furbish DJ, Savage KS. 2010. Earthworms as agents for arsenic transport and transformation in roxarsone-impacted soil mesocosms: a μXANES and modeling study. Geoderma 156:99–111 [Google Scholar]
  22. Crecelius EA. 1977. Changes in the chemical speciation of arsenic following ingestion by man. Environ. Health Perspect. 19:147–50 [Google Scholar]
  23. Cullen WR, McBride BC, Pickett AW. 1979. The transformation of arsenicals by Candida humicola. Can. J. Microbiol. 25:1201–5 [Google Scholar]
  24. Cullen WR, Reimer KJ. 1989. Environmental arsenic chemistry. Chem. Rev. 89:713–64 [Google Scholar]
  25. Davies PC, Benner SA, Cleland CE, Lineweaver CH, McKay CP, Wolfe-Simon F. 2009. Signatures of a shadow biosphere. Astrobiology 9:241–49 [Google Scholar]
  26. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ. 1994. Reduction and binding of arsenate and dimethyl-arsinate by glutathione: a magnetic resonance study. Chem. Biol. Interact. 90:139–55 [Google Scholar]
  27. Dhar RK, Zheng Y, Saltikov CW, Radloff KA, Mailloux BJ. et al. 2011. Microbes enhance mobility of arsenic in Pleistocene aquifer sand from Bangladesh. Environ. Sci. Technol. 45:2648–54 [Google Scholar]
  28. Drobná Z, Del Razo LM, García-Vargas GG, Sánchez-Peña LC, Barrera-Hernández A. et al. 2012. Environmental exposure to arsenic, AS3MT polymorphism and prevalence of diabetes in Mexico. J. Expo. Sci. Environ. Epidemiol. 23:151–55 [Google Scholar]
  29. Drobná Z, Xing W, Thomas DJ, Stýblo M. 2006. shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells. Chem. Res. Toxicol. 19:894–98 [Google Scholar]
  30. Duval S, Ducluzeau AL, Nitschke W, Schoepp-Cothenet B. 2008. Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes. BMC Evol. Biol. 8:206 [Google Scholar]
  31. Edmonds JS, Francesconi KA. 1981. Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 289:602–4 [Google Scholar]
  32. Edmonds JS, Francesconi KA. 1987. Transformations of arsenic in the marine environment. Experientia 43:553–57 [Google Scholar]
  33. Edmonds JS, Francesconi KA, Stick RV. 1993. Arsenic compounds from marine organisms. Nat. Prod. Rep. 10:421–28 [Google Scholar]
  34. Ellis PJ, Conrads T, Hille R, Kuhn P. 2001. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9:125–32 [Google Scholar]
  35. Fendorf S, Herbel MJ, Tufano KJ, Kocar BD. 2008. Biogeochemical processes controlling the cycling of arsenic in soils and sediments. Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments A Violante, PM Huang, GM Gadd 313–38 Hoboken, NJ: Wiley [Google Scholar]
  36. Fendorf S, Michael HA, van Geen A. 2010. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–27 [Google Scholar]
  37. Feng M, Schrlau JE, Snyder R, Snyder GH, Chen M. et al. 2005. Arsenic transport and transformation associated with MSMA application on a golf course green. J. Agric. Food Chem. 53:3556–62 [Google Scholar]
  38. Fisher JC, Hollibaugh JT. 2008. Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California. Appl. Environ. Microbiol. 74:2588–94 [Google Scholar]
  39. Francesconi KA, Kuehnelt D. 2002. Arsenic compounds in the environment. Environmental Chemistry of Arsenic JWT Frankenberger 51–94 New York: Dekker [Google Scholar]
  40. Gao S, Buran RG. 1997. Environmental factors affecting rates of arsine evolution from mineralization of arsenicals in soil. J. Environ. Qual. 26:753–63 [Google Scholar]
  41. Garbarino JR, Bednar AJ, Rutherford DW, Beyer RS, Wershaw RL. 2003. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting. Environ. Sci. Technol. 37:1509–14 [Google Scholar]
  42. Ghosh M, Shen J, Rosen BP. 1999. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96:5001–6 [Google Scholar]
  43. Gladysheva TB, Oden KL, Rosen BP. 1994. Properties of the arsenate reductase of plasmid R773. Biochemistry 33:7288–93 [Google Scholar]
  44. Grube A, Donaldson D, Kiely T, Wu L. 2011. Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates Washington, DC: EPA http://www.epa.gov/pesticides/pestsales/07pestsales/market_estimates2007.pdf
  45. Hanaoka K, Hasegawa S, Kawabe N, Tagawa S, Kaise T. 1990. Aerobic and anaerobic degradation of several arsenicals by sedimentary micro-organisms. Appl. Organometal. Chem. 4:239–43 [Google Scholar]
  46. Hansen HR, Raab A, Price AH, Duan GL, Zhu YG. et al. 2011. Identification of tetramethylarsonium in rice grains with elevated arsenic content. J. Environ. Monit. 13:32–34 [Google Scholar]
  47. Harada N, Takagi K, Baba K, Fujii K, Iwasaki A. 2009. Biodegradation of diphenylarsinic acid to arsenic acid by novel soil bacteria isolated from contaminated soil. Biodegradation 21:491–99 [Google Scholar]
  48. Hasegawa H, Rahman MA, Kitahara K, Itaya Y, Maki T, Ueda K. 2010. Seasonal changes of arsenic speciation in lake waters in relation to eutrophication. Sci. Total Environ. 408:1684–90 [Google Scholar]
  49. Hohmann-Marriott MF, Blankenship RE. 2011. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62:515–48 [Google Scholar]
  50. Huang H, Jia Y, Sun GX, Zhu YG. 2012a. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Environ. Sci. Technol. 46:2163–68 [Google Scholar]
  51. Huang H, Zhu YG, Chen Z, Yin XX, Sun G. 2012b. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil. J. Soils Sediments 12:402–10 [Google Scholar]
  52. Huang JH, Hu KN, Decker B. 2011. Organic arsenic in the soil environment: speciation, occurrence, transformation, and adsorption behavior. Water Air Soil Pollut. 219:401–15 [Google Scholar]
  53. Huang JH, Scherr F, Matzner E. 2007. Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils. Water Air Soil Pollut. 182:31–41 [Google Scholar]
  54. Hughes MF. 2002. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 133:1–16 [Google Scholar]
  55. Indriolo E, Na G, Ellis D, Salt DE, Banks JA. 2010. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–57 [Google Scholar]
  56. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM. et al. 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71 [Google Scholar]
  57. Ji G, Garber EAE, Armes LG, Chen CM, Fuchs JA, Silver S. 1994. Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33:7294–99 [Google Scholar]
  58. Jia Y, Huang H, Sun GX, Zhao FJ, Zhu YG. 2012. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environ. Sci. Technol. 46:8090–96 [Google Scholar]
  59. Jia Y, Huang H, Zhong M, Wang FH, Zhang LM, Zhu YG. 2013. Microbial arsenic methylation in soil and rice rhizosphere. Environ. Sci. Technol. 47:3141–48 [Google Scholar]
  60. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW. et al. 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–3 [Google Scholar]
  61. Kile ML, Houseman EA, Breton CV, Smith T, Quamruzzaman O. et al. 2007. Dietary arsenic exposure in Bangladesh. Environ. Health Perspect. 115:889–93 [Google Scholar]
  62. Koch I, Feldmann J, Wang LX, Andrewes P, Reimer KJ, Cullen WR. 1999. Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Sci. Total Environ. 236:101–17 [Google Scholar]
  63. Köhler M, Hofmann K, Völsgen F, Thurow K, Koch A. 2001. Bacterial release of arsenic ions and organoarsenic compounds from soil contaminated by chemical warfare agents. Chemosphere 42:425–29 [Google Scholar]
  64. Krafft T, Macy JM. 1998. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255:647–53 [Google Scholar]
  65. Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT. et al. 2008. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321:967–70 [Google Scholar]
  66. Kulp TR, Hoeft SE, Miller LG, Saltikov C, Murphy JN. et al. 2006. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. Appl. Environ. Microbiol. 72:6514–26 [Google Scholar]
  67. Langner HW, Jackson CR, McDermott TR, Inskeep WP. 2001. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ. Sci. Technol. 35:3302–9 [Google Scholar]
  68. Le XC, Cullen WR, Reimer KJ. 1994. Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin. Chem. 40:617–24 [Google Scholar]
  69. Lebrun E, Brugna M, Baymann F, Muller D, Lièvremont D. et al. 2003. Arsenite oxidase, an ancient bioenergetic enzyme. Mol. Biol. Evol. 20:686–93 [Google Scholar]
  70. Lehr CR, Polishchuk E, Delisle MC, Franz C, Cullen WR. 2003. Arsenic methylation by micro-organisms isolated from sheepskin bedding materials. Hum. Exp. Toxicol. 22:325–34 [Google Scholar]
  71. Leslie EM. 2011. Arsenic-glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs). J. Inorg. Biochem. 108:141–49 [Google Scholar]
  72. Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J. et al. 2009a. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 150:2071–80 [Google Scholar]
  73. Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ. 2009b. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Technol. 43:3778–83 [Google Scholar]
  74. Liscombe DK, Louie GV, Noel JP. 2012. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat. Prod. Rep. 29:1238–50 [Google Scholar]
  75. Lomax C, Liu WJ, Wu L, Xue K, Xiong J. et al. 2011. Methylated arsenic species in plants originate from soil microorganisms. New Phytol. 193:665–72 [Google Scholar]
  76. Lopez DL, Bundschuh J, Birkle P, Armienta MA, Cumbal L. et al. 2012. Arsenic in volcanic geothermal fluids of Latin America. Sci. Total Environ. 429:57–75 [Google Scholar]
  77. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH. et al. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 105:9931–35 [Google Scholar]
  78. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic. Nature 409:579 [Google Scholar]
  79. Maejima Y, Arao T, Baba K. 2011. Transformation of diphenylarsinic acid in agricultural soils. J. Environ. Qual. 40:76–82 [Google Scholar]
  80. Maki T, Hasegawa H, Watarai H, Ueda K. 2004. Classification for dimethylarsenate-decomposing bacteria using a restrict fragment length polymorphism analysis of 16S rRNA genes. Anal. Sci. 20:61–68 [Google Scholar]
  81. Maki T, Hirota W, Ueda K, Hasegawa H, Rahman MA. 2009. Seasonal dynamics of biodegradation activities for dimethylarsinic acid (DMA) in Lake Kahokugata. Chemosphere 77:36–42 [Google Scholar]
  82. Maki T, Takeda N, Hasegawa H, Ueda K. 2006a. Isolation of monomethylarsonic acid–mineralizing bacteria from arsenic contaminated soils of Ohkunoshima Island. Appl. Organometal. Chem. 20:538–44 [Google Scholar]
  83. Maki T, Watarai H, Kakimoto T, Takahashi M, Hasegawa H, Ueda K. 2006b. Seasonal dynamics of dimethyl-arsenic acid degrading bacteria dominated in Lake Kibagata. Geomicrobiol. J. 23:311–18 [Google Scholar]
  84. Makris KC, Quazi S, Punamiya P, Sarkar D, Datta R. 2008. Fate of arsenic in swine waste from concentrated animal feeding operations. J. Environ. Qual. 37:1626–33 [Google Scholar]
  85. Malasarn D, Saltikov W, Campbell KM, Santini JM, Hering JG, Newman DK. 2004. arrA is a reliable marker for As(V) respiration. Science 306:455 [Google Scholar]
  86. Marapakala K, Qin J, Rosen BP. 2012. Identification of catalytic residues in the As(III) S-adenosylmethionine methyltransferase. Biochemistry 51:944–51 [Google Scholar]
  87. Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL. et al. 2001. Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure 9:1071–81 [Google Scholar]
  88. Meharg AA, Zhao FJ. 2012. Arsenic and Rice Dordrecht: Springer
  89. Meng XY, Qin J, Wang LH, Duan GL, Sun GX. et al. 2011. Arsenic biotransformation and volatilization in transgenic rice. New Phytol. 191:49–56 [Google Scholar]
  90. Messens J, Silver S. 2006. Arsenate reduction: thiol cascade chemistry with convergent evolution. J. Mol. Biol. 362:1–17 [Google Scholar]
  91. Mestrot A, Feldmann J, Krupp EM, Hossain MS, Roman-Ross G, Meharg AA. 2011a. Field fluxes and speciation of arsines emanating from soils. Environ. Sci. Technol. 45:1798–804 [Google Scholar]
  92. Mestrot A, Merle JK, Broglia A, Feldmann J, Krupp EM. 2011b. Atmospheric stability of arsine and methyl-arsines. Environ. Sci. Technol. 45:4010–15 [Google Scholar]
  93. Miyashita S, Fujiwara S, Tsuzuki M, Kaise T. 2011. Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga. Chlamydomonas reinhardtii Biosci. Biotechnol. Biochem. 75:522–30 [Google Scholar]
  94. Miyashita S, Shimoya M, Kamidate Y, Kuroiwa T, Shikino O. et al. 2009. Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS. Chemosphere 75:1065–73 [Google Scholar]
  95. Morrison J. 1969. Distribution of arsenic from poultry litter in broiler chickens, soil, and crops. J. Agric. Food Chem. 17:1288–90 [Google Scholar]
  96. Mukherjee SC, Rahman MM, Chowdhury UK, Sengupta MK, Lodh D. et al. 2003. Neuropathy in arsenic toxicity from groundwater arsenic contamination in West Bengal, India. J. Environ. Sci. Health A 38:165–83 [Google Scholar]
  97. Mukhopadhyay R, Dey S, Xu N, Gage D, Lightbody J. et al. 1996. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc. Natl. Acad. Sci. USA 93:10383–87 [Google Scholar]
  98. Mukhopadhyay R, Rosen BP. 1998. The Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol. Lett. 168:127–36 [Google Scholar]
  99. Mukhopadhyay R, Rosen BP. 2002. Arsenate reductases in prokaryotes and eukaryotes. Environ. Health Perspect. 110:Suppl. 5745–48 [Google Scholar]
  100. Mukhopadhyay R, Rosen BP, Phung LT, Silver S. 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26:311–25 [Google Scholar]
  101. Mukhopadhyay R, Zhou Y, Rosen BP. 2003. Directed evolution of a yeast arsenate reductase into a protein tyrosine phosphatase. J. Biol. Chem. 278:24476–80 [Google Scholar]
  102. Mushak P, Crocetti AF. 1995. Risk and revisionism in arsenic cancer risk assessment. Environ. Health Perspect. 103:684–89 [Google Scholar]
  103. Nakamiya K, Nakayama T, Ito H, Edmonds JS, Shibata Y, Morita M. 2007. Degradation of arylarsenic compounds by microorganisms. FEMS Microbiol. Lett. 274:184–88 [Google Scholar]
  104. Natl. Res. Counc. (NRC) 1999. Arsenic in Drinking Water Washington, DC: Natl. Acad. Press http://www.nap.edu/openbook.php?isbn=0309063337
  105. Natl. Res. Counc. (NRC) 2001. Arsenic in Drinking Water: 2001 Update Washington, DC: Natl. Acad. Press http://www.nap.edu/books/0309076293/html/
  106. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH. et al. 2013. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ. Health Perspect. 121:295–302 [Google Scholar]
  107. Newman DK, Ahmann Morel D. 1998. A brief review of microbial arsenate respiration. Geomicrobiol. J. 15:255–68 [Google Scholar]
  108. Oden KL, Gladysheva TB, Rosen BP. 1994. Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol. Microbiol. 12:301–6 [Google Scholar]
  109. Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT. 2002. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68:4795–802 [Google Scholar]
  110. Oremland RS, Saltikov CW, Wolfe-Simon F, Stolz JF. 2009. Arsenic in the evolution of Earth and extraterrestrial ecosystems. Geomicrobiol. J. 26:522–36 [Google Scholar]
  111. Oremland RS, Stolz JF. 2003. The ecology of arsenic. Science 300:939–44 [Google Scholar]
  112. Oremland RS, Stolz JF. 2005. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 13:45–49 [Google Scholar]
  113. Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV. 2000. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol. Appl. Pharmacol. 163:203–7 [Google Scholar]
  114. Petrick JS, Jagadish B, Mash EA, Aposhian HV. 2001. Monomethylarsonous acid (MMAIII) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem. Res. Toxicol. 14:651–56 [Google Scholar]
  115. Planer-Friedrich B, Lehr C, Matschullat J, Merkel BJ, Nordstrom DK, Sandstrom MW. 2006. Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochim. Cosmochim. Acta 70:2480–91 [Google Scholar]
  116. Planer-Friedrich B, London J, McCleskey RB, Nordstrom DK, Wallschlaeger D. 2007. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical importance. Environ. Sci. Technol. 41:5245–51 [Google Scholar]
  117. Planer-Friedrich B, Suess E, Scheinost AC, Wallschlager D. 2010. Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence. Anal. Chem. 82:10228–35 [Google Scholar]
  118. Price RE, Amend JP, Pichler T. 2007. Enhanced geochemical gradients in a marine shallow-water hydrothermal system: unusual arsenic speciation in horizontal and vertical pore water profiles. Appl. Geochem. 22:2595–605 [Google Scholar]
  119. Price RE, Pichler T. 2005. Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, Tutum Bay, Ambitle Island, PNG. Chem. Geol. 224:122–35 [Google Scholar]
  120. Putila JJ, Guo NL. 2011. Association of arsenic exposure with lung cancer incidence rates in the United States. PLoS ONE 6:e25886 [Google Scholar]
  121. Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP. 2009. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc. Natl. Acad. Sci. USA 106:5213–17 [Google Scholar]
  122. Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C. 2006. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc. Natl. Acad. Sci. USA 103:2075–80 [Google Scholar]
  123. Rahman MA, Hasegawa H, Lim RP. 2012. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ. Res. 116:118–35 [Google Scholar]
  124. Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF. 2009. Respiratory arsenate reductase as a bidirectional enzyme. Biochem. Biophys. Res. Commun. 382:298–302 [Google Scholar]
  125. Rosen BP, Ajees AA, McDermott TR. 2011. Life and death with arsenic. BioEssays 33:350–57 [Google Scholar]
  126. Rossman TG, Uddin AN, Burns FJ, Bosland MC. 2001. Arsenite is a cocarcinogen with solar ultraviolet radiation for mouse skin: an animal model for arsenic carcinogenesis. Toxicol. Appl. Pharmacol. 176:64–71 [Google Scholar]
  127. Rutherford DW, Bednar AJ, Garbarino JR, Needham R, Staver KW, Wershaw RL. 2003. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter. Environ. Sci. Technol. 37:1515–20 [Google Scholar]
  128. Saltikov CW, Newman DK. 2003. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA 100:10983–88 [Google Scholar]
  129. Sanders JG. 1979. Microbial role in the demethylation and oxidation of methylated arsenicals in seawater. Chemosphere 8135–37
  130. Shibata Y, Morita M, Fuwa K. 1992. Selenium and arsenic in biology: their chemical forms and biological functions. Adv. Biophys. 28:31–80 [Google Scholar]
  131. Sierra-Alvarez R, Yenal U, Field JA, Kopplin M, Gandolfi AJ, Garbarino JR. 2006. Anaerobic biotransformation of organo-arsenical pesticides monomethylarsonic acid and dimethylarsinic acid. J. Agric. Food Chem. 54:3959–66 [Google Scholar]
  132. Smedley PL, Kinniburgh DG. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17:517–68 [Google Scholar]
  133. Smith AH, Lingas EO, Rahman M. 2000. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 78:1093–103 [Google Scholar]
  134. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D. et al. 2010. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc. Natl. Acad. Sci. USA 107:21187–92 [Google Scholar]
  135. States JC, Srivastava S, Chen Y, Barchowsky A. 2009. Arsenic and cardiovascular disease. Toxicol. Sci. 107:312–23 [Google Scholar]
  136. Stellman JM, Stellman SD, Christinan R, Weber T, Tomasallo C. 2003. The extent and patterns of usage of Agent Orange and other herbicides in Vietnam. Nature 422:681–87 [Google Scholar]
  137. Stolz JF, Basu P, Santini JM, Oremland RS. 2006. Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol. 60:107–30 [Google Scholar]
  138. Stolz JF, Perera E, Kilonzo B, Kail B, Crable B. et al. 2007. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environ. Sci. Technol. 41:818–23 [Google Scholar]
  139. Stone R. 2008. Arsenic and paddy rice: a neglected cancer risk?. Science 321:184–85 [Google Scholar]
  140. Stroud JL, Khan MA, Norton GJ, Islam MR, Dasgupta T. et al. 2011. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environ. Sci. Technol. 45:4262–69 [Google Scholar]
  141. Sun W, Sierra-Alvarez R, Hsu I, Rowlette P, Field JA. 2010a. Anoxic oxidation of arsenite linked to chemolithotrophic denitrification in continuous bioreactors. Biotechnol. Bioeng. 105:909–17 [Google Scholar]
  142. Sun W, Sierra-Alvarez R, Milner L, Field JA. 2010b. Anaerobic oxidation of arsenite linked to chlorate reduction. Appl. Environ. Microbiol. 76:6804–11 [Google Scholar]
  143. Taylor VF, Jackson BP, Siegfried M, Navratilova J, Francesconi KA. et al. 2012. Arsenic speciation in food chains from mid-Atlantic hydrothermal vents. Environ. Chem. 9:130–38 [Google Scholar]
  144. Tchounwou PB, Patlolla AK, Centeno JA. 2003. Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol. Pathol. 31:575–88 [Google Scholar]
  145. Tofail F, Vahter M, Hamadani JD, Nermell B, Huda SN. et al. 2009. Effect of arsenic exposure during pregnancy on infant development at 7 months in rural Matlab, Bangladesh. Environ. Health Perspect. 117:288–93 [Google Scholar]
  146. Tseng CH, Chong CK, Chen CJ, Lin BJ, Tai TY. 1995. Abnormal peripheral microcirculation in seemingly normal subjects living in blackfoot-disease-hyperendemic villages in Taiwan. Int. J. Microcirc. Clin. Exp. 15:21–27 [Google Scholar]
  147. Tseng CH, Chong CK, Tseng CP, Hsueh YM, Chiou HY. et al. 2003. Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol. Lett. 137:15–21 [Google Scholar]
  148. Tseng CH, Tseng CP, Chiou HY, Hsueh YM, Chong CK, Chen CJ. 2002. Epidemiologic evidence of diabetogenic effect of arsenic. Toxicol. Lett. 133:69–76 [Google Scholar]
  149. Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S. 1968. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Cancer Inst. 40:453–63 [Google Scholar]
  150. Tufano KJ, Reyes C, Saltikov CW, Fendorf S. 2008. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 42:8283–89 [Google Scholar]
  151. van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B. 2013. Arsenics as bioenergetic substrates. Biochim. Biophys. Acta 1827:176–88 [Google Scholar]
  152. Von Endt DW, Kearney PC, Kafman DD. 1968. Degradation of monosodium methanearsonic acid by soil microorganisms. J. Agric. Food Chem. 16:17–20 [Google Scholar]
  153. Warelow TP, Oke M, Schoepp-Cothenet B, Dahl JU, Bruselat N. et al. 2013. The respiratory arsenite oxidase: structure and the role of residues surrounding the Rieske cluster. PLoS ONE 8:e72535 [Google Scholar]
  154. Wenzel WW. 2013. Arsenic. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability BJ Alloway 241–81 Dordrecht, Neth.: Springer [Google Scholar]
  155. Wilkie JA, Hering JG. 1998. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ. Sci. Technol. 32:657–62 [Google Scholar]
  156. Williams PN, Raab A, Feldmann J, Meharg AA. 2007. Market basket survey shows elevated levels of As in South Central U.S. processed rice compared to California: consequences for human dietary exposure. Environ. Sci. Technol. 41:2178–83 [Google Scholar]
  157. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE. et al. 2010. A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–66 [Google Scholar]
  158. Woolson EA, Aharonson N, Iadevaia R. 1982. Application of the high-performance liquid chromatography–flameless atomic absorption method to the study of alkyl arsenical herbicide metabolism in soil. J. Agric. Food Chem. 30:580–84 [Google Scholar]
  159. Xu XY, McGrath SP, Meharg AA, Zhao FJ. 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. 42:5574–79 [Google Scholar]
  160. Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P. 2010. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003–2004 NHANES data. Environ. Health Perspect. 118:345–50 [Google Scholar]
  161. Yang HC, Fu HL, Lin YF, Rosen BP. 2012. Pathways of arsenic uptake and efflux. Curr. Top. Membr. 69:325–58 [Google Scholar]
  162. Ye J, Rensing C, Rosen BP, Zhu YG. 2012. Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 17:155–62 [Google Scholar]
  163. Ye WL, Wood BA, Stroud JL, Andralojc PJ, Raab A. et al. 2010. Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol. 154:1505–13 [Google Scholar]
  164. Yoshinaga M, Cai Y, Rosen BP. 2011. Demethylation of methylarsonic acid by a microbial community. Environ. Microbiol. 13:1205–15 [Google Scholar]
  165. Zakharyan RA, Sampayo-Reyes A, Healy SM, Tsaprailis G, Board PG. et al. 2001. Human monomethylarsonic acid (MMAV) reductase is a member of the glutathione-S-transferase superfamily. Chem. Res. Toxicol. 14:1051–57 [Google Scholar]
  166. Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V. et al. 2012. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 14:1635–45 [Google Scholar]
  167. Zargar K, Hoeft S, Oremland R, Saltikov CW. 2010. Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J. Bacteriol. 192:3755–62 [Google Scholar]
  168. Zhang G, Liu C-Q, Liu H, Jin Z, Han G, Li L. 2008. Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China. Geothermics 37:73–83 [Google Scholar]
  169. Zhao FJ, Dunham SJ, McGrath SP. 2002. Arsenic hyperaccumulation by different fern species. New Phytol. 156:27–31 [Google Scholar]
  170. Zhao FJ, McGrath SP, Meharg AA. 2010. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 61:535–59 [Google Scholar]
  171. Zhao FJ, Zhu YG, Meharg AA. 2013. Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ. Sci. Technol. 47:3957–66 [Google Scholar]
  172. Zhou Y, Messier N, Ouellette M, Rosen BP, Mukhopadhyay R. 2004. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug Pentostam. J. Biol. Chem. 279:37445–51 [Google Scholar]
  173. Zhu YG, Williams PN, Meharg AA. 2008. Exposure to inorganic arsenic from rice: a global health issue?. Environ. Pollut. 154:169–71 [Google Scholar]
/content/journals/10.1146/annurev-earth-060313-054942
Loading
/content/journals/10.1146/annurev-earth-060313-054942
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error