Skip to main content
Log in

Hydrogel scaffolds to study cell biology in four dimensions

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) (PEG) hydrogels represent a versatile material scaffold for culturing cells in two or three dimensions with the advantages of limited protein fouling and cytocompatible polymerization to enable cell encapsulation. By using light-based chemistries for gelation and for incorporating biomolecules into the network, dynamic niches can be created that facilitate the study of how cells respond to user-dictated or cell-dictated changes in environmental signals. Specifically, we demonstrate integration of a photo-cleavable molecule into network cross-links and into pendant functional groups to construct gels with biophysical and biochemical properties that are spatiotemporally tunable with light. Complementary to this approach, an enzymatically cleavable peptide sequence can be introduced within hydrogel networks, in this case through photoinitiated addition reactions between thiol-containing biomacromolecules and ene-containing synthetic polymers, to enable cellular remodeling of their surrounding hydrogel microenvironment. With such tunable material platforms, researchers can employ a systematic approach for 3D cell culture experiments, spatially and temporally modulating physical properties (e.g., stiffness) as well as biological signals (e.g., adhesive ligands) to study cell behavior in response to environmental stimuli. Collectively, these material systems suggest routes for new experimentation to study and manipulate cellular functions in four dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. M.J. Reginato, K.R. Mills, J.K. Paulus, D.K. Lynch, D.C. Sgroi, J. Debnath, S.K. Muthuswamy, J.S. Brugge, Nat. Cell Biol. 5, 733 (2003).

    Google Scholar 

  2. M.K. Magnusson, D.F. Mosher, Arterioscler. Thromb. Vasc. Biol. 18, 1363 (1998).

    Google Scholar 

  3. J.T. Parsons, K.H. Martin, J.K. Slack, J.M. Taylor, S.A. Weed, Oncogene 19, 5606 (2000).

    Google Scholar 

  4. M.W. Tibbitt, K.S. Anseth, Biotechnol. Bioeng. 103, 655 (2009).

    Google Scholar 

  5. J. Taipale, J. Keski-Oja, FASEB J. 11, 51 (1997).

    Google Scholar 

  6. S.-H. Kim, J. Turnbull, S. Guimond, J. Endocrinol. 209, 139 (2011).

    Google Scholar 

  7. M. Bacac, I. Stamenkovic, Annu. Rev. Pathol. 3, 221 (2008).

    Google Scholar 

  8. W.P. Daley, S.B. Peters, M. Larsen, J. Cell Sci. 121, 255 (2008).

    Google Scholar 

  9. D. Ingber, Annu. Rev. Physiol. 59, 575 (1997).

    Google Scholar 

  10. I. Levental, P.C. Georges, P.A. Janmey, Soft Matter 3, 299 (2007).

    Google Scholar 

  11. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126, 677 (2006).

    Google Scholar 

  12. M.J. Paszek, N. Zahir, K.R. Johnson, J.N. Lakins, G.I. Rozenberg, A. Gefen, D.A. Reinhart-King, S.S. Margulies, M. Dembo, D. Boettiger, D.A. Hammer, V.M. Weaver, Cancer Cell 8, 241 (2005).

    Google Scholar 

  13. F. Rosso, G. Marino, A. Giordano, M. Barbarisi, D. Parmeggiani, A. Barbarisi, J. Cell. Physiol. 203, 465 (2005).

    Google Scholar 

  14. M.P. Lutolf, J.A. Hubbell, Nat. Biotechnol. 23, 47 (2005).

    Google Scholar 

  15. N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Adv. Mater. 18, 1345 (2006).

    Google Scholar 

  16. A. Sawhney, C. Pathak, J. Hubbell, Macromolecules 26, 581 (1993).

    Google Scholar 

  17. S.J. Bryant, C.R. Nuttelman, K.S. Anseth, J. Biomater. Sci., Polym. Ed. 11, 439 (2000).

    Google Scholar 

  18. S.J. Bryant, K.S. Anseth, J. Biomed. Mater. Res. 59, 63 (2002).

    Google Scholar 

  19. M.C. Cushing, K.S. Anseth, Science 316, 1133 (2007).

    Google Scholar 

  20. L.M. Weber, J. He, B. Bradley, K. Haskins, K.S. Anseth, Acta Biomater. 2, 1 (2006).

    Google Scholar 

  21. M. Cordey, M. Limacher, S. Kobel, V. Taylor, M.P. Lutolf, Stem Cells 26, 2586 (2008).

    Google Scholar 

  22. M.A. Rice, K.S. Anseth, J. Biomed. Mater. Res. Part A 70, 560 (2004).

    Google Scholar 

  23. C.R. Nuttelman, S.M. Henry, K.S. Anseth, Biomaterials 23, 3617 (2002).

    Google Scholar 

  24. S.J. Bryant, K.S. Anseth, J. Biomed. Mater. Res. Part A 64, 70 (2003).

    Google Scholar 

  25. M.P. Lutolf, J.L. Lauer-Fields, H.G. Schmoekel, A.T. Metters, F.E. Weber, G.B. Fields, J.A. Hubbell, Proc. Natl. Acad. Sci. U.S.A. 100, 5413 (2003).

    Google Scholar 

  26. C.N. Salinas, K.S. Anseth, Biomaterials 29, 2370 (2008).

    Google Scholar 

  27. A.M. Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Science 324, 59 (2009).

    Google Scholar 

  28. S.J. Bryant, K.S. Anseth, in Scaffolding in Tissue Engineering, P.X. Ma, J. Elisseeff, Eds. (CRC Press, Boca Raton, FL, 2006), chap. 6, p. 71.

    Google Scholar 

  29. A. Metters, J. Hubbell, Biomacromolecules 6, 290 (2005).

    Google Scholar 

  30. A.M. Kloxin, M.W. Tibbitt, A.M. Kasko, J.A. Fairbairn, K.S. Anseth, Adv. Mater. 22, 61 (2010).

    Google Scholar 

  31. J.A. Benton, H.B. Kern, K.S. Anseth, J. Heart Valve Dis. 17, 689 (2008).

    Google Scholar 

  32. C.Y.Y. Yip, J.-H. Chen, R. Zhao, C.A. Simmons, Arterioscler. Thromb. Vasc. Biol. 29, 936 (2009).

    Google Scholar 

  33. A.M. Kloxin, J.A. Benton, K.S. Anseth, Biomaterials 31, 1 (2010).

    Google Scholar 

  34. H. Wang, S.M. Haeger, A.M. Kloxin, L.A. Leinwand, K.S. Anseth, PloS One 7, e39969 (2012).

    Google Scholar 

  35. A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher, Biophys. J. 86, 617 (2004).

    Google Scholar 

  36. J.R. Tse, A.J. Engler, PloS One 6, e15978 (2011).

    Google Scholar 

  37. N. Zaari, P. Rajagopalan, S.K. Kim, A.J. Engler, J.Y. Wong, Adv. Mater. 16, 2133 (2004).

    Google Scholar 

  38. E. Ruoslahti, M.D. Pierschbacher, Science 238, 491 (1987).

    Google Scholar 

  39. J. Hubbell, Nat. Biotechnol. 13, 565 (1995).

    Google Scholar 

  40. J.A. Burdick, K.S. Anseth, Biomaterials 23, 4315 (2002).

    Google Scholar 

  41. S. Tavella, G. Bellese, P. Castagnola, I. Martin, D. Piccini, R. Doliana, A. Colombatti, R. Cancedda, C. Tacchetti, J. Cell Sci. 110, 2261 (1997).

    Google Scholar 

  42. A.M. DeLise, L. Fischer, R.S. Tuan, Osteoarth. Cartil. 8, 309 (2000).

    Google Scholar 

  43. B.D. Fairbanks, M.P. Schwartz, A.E. Halevi, C.R. Nuttelman, C.N. Bowman, K.S. Anseth, Adv. Mater. 21, 5005 (2009).

    Google Scholar 

  44. C.E. Hoyle, C.N. Bowman, Angew. Chem. Int. Ed. 49, 1540 (2010).

    Google Scholar 

  45. M.P. Lutolf, N. Tirelli, S. Cerritelli, L. Cavalli, J.A. Hubbell, Bioconjugate Chem. 12, 1051 (2001).

    Google Scholar 

  46. D.L. Elbert, J.A. Hubbell, Biomacromolecules 2, 430 (2001).

    Google Scholar 

  47. M.P. Lutolf, J.A. Hubbell, Biomacromolecules 4, 713 (2003).

    Google Scholar 

  48. M.P. Lutolf, G.P. Raeber, A.H. Zisch, N. Tirelli, J.A. Hubbell, Adv. Mater. 15, 888 (2003).

    Google Scholar 

  49. B.D. Polizzotti, B.D. Fairbanks, K.S. Anseth, Biomacromolecules 9, 1084 (2008).

    Google Scholar 

  50. S.B. Anderson, C.-C. Lin, D.V. Kuntzler, K.S. Anseth, Biomaterials 32, 3564 (2011).

    Google Scholar 

  51. J.A. Benton, B.D. Fairbanks, K.S. Anseth, Biomaterials 30, 6593 (2009).

    Google Scholar 

  52. B.K. Mann, A.S. Gobin, A.T. Tsai, R.H. Schmedlen, J.L. West, Biomaterials 22, 3045 (2001).

    Google Scholar 

  53. J.A. Codelli, J.M. Baskin, N.J. Agard, C.R. Bertozzi, J. Am. Chem. Soc. 130, 11486 (2008).

    Google Scholar 

  54. C.A. DeForest, B.D. Polizzotti, K.S. Anseth, Nat. Mater. 8, 659 (2009).

    Google Scholar 

  55. C.A. DeForest, E.A. Sims, K.S. Anseth, Chem. Mater. 22, 4783 (2010).

    Google Scholar 

  56. C.A. DeForest, K.S. Anseth, Nat. Chem. 3, 925 (2011).

    Google Scholar 

Download references

Acknowledgements

K.L. would like to thank Ryan Lewis and Mark Tibbitt for helpful discussions while drafting the manuscript. The authors would like to acknowledge funding from the Howard Hughes Medical Institute and NSF (DMR 1006711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine J. R. Lewis.

Additional information

This article is based on the Mid-Career Researcher Award lecture, presented by Kristi S. Anseth on April 11, 2012, at the 2012 Materials Research Society Spring Meeting in San Francisco. Anseth is recognized for “exceptional achievement at the interface of materials and biology enabling new, functional biomaterials that answer fundamental questions in biology and yield advances in regenerative medicine, stem-cell differentiation, and cancer treatment.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, K.J.R., Anseth, K.S. Hydrogel scaffolds to study cell biology in four dimensions. MRS Bulletin 38, 260–268 (2013). https://doi.org/10.1557/mrs.2013.54

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.54

Navigation