Skip to main content
Log in

Encapsulation of volatile compounds in silk microparticles

  • Brief Communication
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Various techniques have been employed to entrap fragrant oils within microcapsules or microparticles in the food, pharmaceutical, and chemical industries for improved stability and delivery. In the present work, we describe the use of silk protein microparticles for encapsulating fragrant oils using ambient processing conditions to form an all-natural biocompatible matrix. These microparticles are stabilized via physical crosslinking, requiring no chemical agents, and are prepared with aqueous and ambient processing conditions using polyvinyl alcohol–silk emulsions. The particles were loaded with fragrant oils via direct immersion of the silk particles within an oil bath. The oil-containing microparticles were coated using alternating silk and polyethylene oxide layers to control the release of the oil from the microspheres. Particle morphology and size, oil loading capacity, release rates as well as silk–oil interactions and coating treatments were characterized. Thermal analysis demonstrated that the silk coatings can be tuned to alter both retention and release profiles of the encapsulated fragrance. These oil-containing particles demonstrate the ability to adsorb and controllably release oils, suggesting a range of potential applications including cosmetic and fragrance utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Milotic, D, “The Impact of Fragrance on Consumer Choice.” J. Consum. Behav., 3 (2) 179–191 (2003)

    Article  Google Scholar 

  2. Ehrlich, H, Bastone, L, “The Use of Odour in the Study of Emotion.” In: Dodd, GH, Toller, SV (eds.) Fragrance: The Psychology and Biology of Perfume. Elsevier Science Publishers, Barking Essex (1992)

    Google Scholar 

  3. Lorig, TS, “Cognitive and Noncognitive Effects on Odour Exposure: Electrophysiological and Behavioral Evidence.” In: Dodd, GH, Toller, SV (eds.) Fragrance: The Psychology and Biology of Perfume. Elsevier Science Publishers, Barking Essex (1992)

    Google Scholar 

  4. Toller, SV, Dodd, GH, “Introduction.” In: Dodd, GH, Toller, SV (eds.) Fragrance: The Psychology and Biology of Perfume. Elsevier Science Publishers, Barking Essex (1992)

    Google Scholar 

  5. Irvin-Hamilton, RJ, The Effect of the Essential Oil of Rosemary and Lemon on Memory Ability in Eighth Graders. University of Tennessee, Knoxville (2000)

    Google Scholar 

  6. Sansukcharearnpon, A, Wanichwecharungruang, S, Leepipatpaiboon, N, Kerdcharoen, T, Arayachukeat, S, “High Loading Fragrance Encapsulation Based on a Polymer-Blend: Preparation and Release Behavior.” Int. J. Pharm., 391 (1–2) 267–273 (2010)

    Article  Google Scholar 

  7. Edris, A, Bergnstahl, B, “Encapsulation of Orange Oil in a Spray Dried Double Emulsion.” Food/Nahrung, 45 (2) 133–137 (2001)

    Article  Google Scholar 

  8. Fukumoto, S, Sawasaki, E, Okuyama, S, Miyake, Y, Yokogoshi, H, “Flavor Components of Monoterpenes in Citrus Essential Oils Enhance the Release of Monoamines from Rat Brain Slices.” Nutr. Neurosci., 9 (1–2) 73–80 (2006)

    Article  Google Scholar 

  9. Karlberg, A-T, Magnusson, K, Nilsson, U, “Air Oxidation of d-Limonene (the Citrus Solvent) Creates Potent Allergens.” Contact Dermat., 26 (5) 332–340 (1992)

    Article  Google Scholar 

  10. Matura, M, Sköld, M, Börje, A, Andersen, KE, Bruze, M, Frosch, P, Goossens, A, Johansen, JD, Svedman, C, White, IR, Karlberg, A-T, “Not Only Oxidized R-(+)- but also S-(−)-Limonene is a Common Cause of Contact Allergy in Dermatitis Patients in Europe.” Contact Dermat., 55 (5) 274–279 (2006)

    Article  Google Scholar 

  11. Madene, A, Jacquot, M, Scher, J, Desobry, S, “Flavour Encapsulation and Controlled Release—a Review.” Int. J. Food Sci. Technol., 41 (1) 1–21 (2006)

    Article  Google Scholar 

  12. Augustin, MA, Sanguansri, L, Margetts, C, Young, B, “Microencapsulation of Food Ingredients.” Food Aust., 53 (6) 220–223 (2001)

    Google Scholar 

  13. Jackson, LS and Lee, K, “Microencapsulation and the Food-Industry.” Food Sci. Technol.-Lebensmittel-Wissenschaft & Technologie, 24 (4) 289–297 (1991)

  14. Whateley, TL, Microencapsulation of Drugs. Harwood Academic Publishers, Amsterdam (1992)

    Google Scholar 

  15. Boh, B, Knez, E, Staresinic, M, “Microencapsulation of Higher Hydrocarbon Phase Change Materials by In Situ Polymerization.” J. Microencapsul., 22 (7) 715–735 (2005)

    Article  Google Scholar 

  16. Baines, D, Knights, J, “Applications I: Flavors.” In: Rowe, DJ (ed.) Chemistry and Technology of Flavors and Fragrances. Blackwell Publishing, Oxford (2005)

    Google Scholar 

  17. Feng, T, Xiao, Z, Tian, H, “Recent Patents in Flavor Microencapsulation.” Recent Pat. Food Nutr. Agric., 1 (3) 10 (2009)

    Google Scholar 

  18. Crowley, MM, Zhang, F, Repka, MA, Thumma, S, Upadhye, SB, Kumar Battu, S, McGinity, JW, Martin, C, “Pharmaceutical Applications of Hot-Melt Extrusion: Part I.” Drug Dev. Ind. Pharm., 33 (9) 909–926 (2007)

    Article  Google Scholar 

  19. Weinbreck, F, Minor, M, de Kruif, CG, “Microencapsulation of Oils Using Whey Protein/Gum Arabic Coacervates.” J. Microencapsul., 21 (6) 667–679 (2004)

    Article  Google Scholar 

  20. Park, S-H, Gil, ES, Cho, H, Mandal, BB, Tien, LW, Min, B-H, Kaplan, DL, “Intervertebral Disk Tissue Engineering Using Biphasic Silk Composite Scaffolds.” Tissue Eng. Part A, 18 (5–6) 447–458 (2012)

    Article  Google Scholar 

  21. Wang, X, Sun, L, Maffini, MV, Soto, A, Sonnenschein, C, Kaplan, DL, “A Complex 3D Human Tissue Culture System Based on Mammary Stromal Cells and Silk Scaffolds for Modeling Breast Morphogenesis and Function.” Biomaterials, 31 (14) 3920–3929 (2010)

    Article  Google Scholar 

  22. Kasoju, N, Bora, U, “Silk Fibroin in Tissue Engineering.” Adv. Healthc. Mater., 1 (4) 393–412 (2012)

    Article  Google Scholar 

  23. Calabrese, R, Kaplan, DL, “Silk Ionomers for Encapsulation and Differentiation of Human MSCs.” Biomaterials, 33 (30) 7375–7385 (2012)

    Article  Google Scholar 

  24. Wang, X, Kluge, JA, Leisk, GG, Kaplan, DL, “Sonication-Induced Gelation of Silk Fibroin for Cell Encapsulation.” Biomaterials, 29 (8) 1054–1064 (2008)

    Article  Google Scholar 

  25. Pritchard, EM, Kaplan, DL, “Silk Fibroin Biomaterials for Controlled Release Drug Delivery.” Expert Opin. Drug Deliv., 8 (6) 797–811 (2011)

    Article  Google Scholar 

  26. Panilaitis, B, Altman, GH, Chen, J, Jin, HJ, Karageorgiou, V, Kaplan, DL, “Macrophage Responses to Silk.” Biomaterials, 24 (18) 3079–3085 (2003)

    Article  Google Scholar 

  27. Altman, GH, Diaz, F, Jakuba, C, Calabro, T, Horan, RL, Chen, J, Lu, H, Richmond, J, Kaplan, DL, “Silk-Based Biomaterials.” Biomaterials, 24 (3) 401–416 (2003)

    Article  Google Scholar 

  28. Wray, LS, Hu, X, Gallego, J, Georgakoudi, I, Omenetto, FG, Schmidt, D, Kaplan, DL, “Effect of Processing on Silk-Based Biomaterials: Reproducibility and Biocompatibility.” J. Biomed. Mater. Res. B Appl. Biomater., 99 (1) 89–101 (2011)

    Article  Google Scholar 

  29. Jose, RR, Elia, R, Firpo, MA, Kaplan, DL, Peattie, RA, “Seamless, Axially Aligned, Fiber Tubes, Meshes, Microbundles and Gradient Biomaterial Constructs.” J. Mater. Sci. Mater. Med., 23 (11) 2679–2695 (2012)

    Article  Google Scholar 

  30. Rockwood, DN, Preda, RC, Yucel, T, Wang, X, Lovett, ML, Kaplan, DL, “Materials Fabrication from Bombyx mori Silk Fibroin.” Nat. Protoc., 6 (10) 1612–1631 (2011)

    Article  Google Scholar 

  31. Kim, UJ, Park, J, Li, C, Jin, HJ, Valluzzi, R, Kaplan, DL, “Structure and Properties of Silk Hydrogels.” Biomacromolecules, 5 (3) 786–792 (2004)

    Article  Google Scholar 

  32. Hu, X, Shmelev, K, Sun, L, Gil, E-S, Park, S-H, Cebe, P, Kaplan, DL, “Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing.” Biomacromolecules, 12 (5) 1686–1696 (2011)

    Article  Google Scholar 

  33. Matsumoto, A, Chen, J, Collette, AL, Kim, UJ, Altman, GH, Cebe, P, Kaplan, DL, “Mechanisms of Silk Fibroin Sol–Gel Transitions.” J. Phys. Chem. B, 110 (43) 21630–21638 (2006)

    Article  Google Scholar 

  34. Zhang, WJ, Wang, XL, Wang, SY, Zhao, J, Xu, LY, Zhu, C, Zeng, DL, Chen, J, Zhang, ZY, Kaplan, DL, Jiang, XQ, “The use of Injectable Sonication-Induced Silk Hydrogel for VEGF(165) and BMP-2 Delivery for Elevation of the Maxillary Sinus Floor.” Biomaterials, 32 (35) 9415–9424 (2011)

    Article  Google Scholar 

  35. Pritchard, EM, Normand, V, Hu, X, Budijono, S, Benczédi, D, Omenetto, F and Kaplan, DL, “Encapsulation of Oil in Silk Fibroin Biomaterials.” J. Appl. Polym. Sci., 131 (6) n/a–n/a (2014)

  36. Li, C, Vepari, C, Jin, H-J, Kim, HJ, Kaplan, DL, “Electrospun Silk-BMP-2 Scaffolds for Bone Tissue Engineering.” Biomaterials, 27 (16) 3115–3124 (2006)

    Article  Google Scholar 

  37. Wang, X, Yucel, T, Lu, Q, Hu, X, Kaplan, DL, “Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery.” Biomaterials, 31 (6) 1025–1035 (2010)

    Article  Google Scholar 

  38. Guziewicz, N, Best, A, Perez-Ramirez, B, Kaplan, DL, “Lyophilized Silk Fibroin Hydrogels for the Sustained Local Delivery of Therapeutic Monoclonal Antibodies.” Biomaterials, 32 (10) 2642–2650 (2011)

    Article  Google Scholar 

  39. Elia, R, Newhide, DR, Pedevillano, PD, Reiss, GR, Firpo, MA, Hsu, EW, Kaplan, DL, Prestwich, GD, Peattie, RA, “Silk-Hyaluronan-Based Composite Hydrogels: A Novel, Securable Vehicle for Drug Delivery.” J. Biomater. Appl., 27 (6) 749–762 (2011)

    Article  Google Scholar 

  40. Omi, S, Umeki, N, Mohri, H, Iso, M, “Microencapsulation of Pheromone-Analogue and Measurement of the Sustained Release.” J. Microencapsul., 8 (4) 465–478 (1991)

    Article  Google Scholar 

  41. Sriamornsak, P, Sungthongjeen, S, “Modification of Theophylline Release with Alginate Gel Formed in Hard Capsules.” AAPS PharmSciTech, 8 (3) E51 (2007)

    Google Scholar 

  42. Chan, LW, Ching, AL, Liew, CV, Heng, PWS, “Mechanistic Study on Hydration and Drug Release Behavior of Sodium Alginate Compacts.” Drug Dev. Ind. Pharm., 33 (6) 667–676 (2007)

    Article  Google Scholar 

  43. Hines, DJ, Kaplan, DL, “Mechanisms of Controlled Release from Silk Fibroin Films.” Biomacromolecules, 12 (3) 804–812 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Eleanor Pritchard for earlier work on these concepts, Dr. Peggy Cebe and Dr. Nicholas Guziewicz for their assistance with the TGA, and Dr. Jing Zhou and Samuel M. Kessel for their assistance with particle formation, coating, and purification. We thank the NIH (P41 EB002520) and Firmenich for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elia, R., Guo, J., Budijono, S. et al. Encapsulation of volatile compounds in silk microparticles. J Coat Technol Res 12, 793–799 (2015). https://doi.org/10.1007/s11998-015-9668-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-015-9668-1

Keywords

Navigation