Skip to main content
Log in

Passive micromixer using by convection and surface tension effects with air-liquid interface

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kakuta, M., Bessoth, F.G. & Manz, A. Microfabricated Devices for Fluid Mixing and Their Application for Chemical Synthesis. Chem. Rec. 1, 395–405 (2001).

    Article  CAS  Google Scholar 

  2. Ottino, J.M. & Wiggins, S. Designing optimal micromixer. Science 305, 485–486 (2004).

    Article  CAS  Google Scholar 

  3. Stone, H.A., Stroock, A.D. & Ajdari, A. Engineering flow n small devices: Microfluidics toward a lab-ona-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

    Article  Google Scholar 

  4. Nguyen, N.-T. & Wu, Z. Micromicers-a review. J. Micromech. Microeng. 15, R1–R6 (2005).

    Article  Google Scholar 

  5. Hessel, V., Lowe, H. & Schonfeld, F. Micromixers-a review on passive and active mixing principles. Chemical Eng. Sci. 60, 2479–2501 (2005).

    Article  CAS  Google Scholar 

  6. Long, M., Sprague, M.A., Grimes, A.A., Rich, B.D. & Khine, M. A simple three-dimensional vortex micromixer. Appl. Phys. Lett. 94, 133501 (2009).

    Article  Google Scholar 

  7. Sudarsan, A.P. & Ugaz, V.M. Multivortex micromixing. Proc. Natl. Acad. Sci. 103, 7228–7233 (2006).

    Article  CAS  Google Scholar 

  8. Wu, Z. & Nguyen, N.-T. Convective-diffusive transport in parallel lamination micromixer. Microfluid. Nanofluid. 1, 208–217 (2005).

    Article  Google Scholar 

  9. Sudarsan, A.P. & Ugaz, V.M. Fluid mixing in planar spiral microchannels. Lab. Chip 6, 74–82 (2006).

    Article  CAS  Google Scholar 

  10. Park, S.J. et al. Rapid three-dimensional passive rotation micromixer using the breakup process. J. Micromech. Microeng. 14, 6–14 (2004).

    Article  Google Scholar 

  11. Voldman, J., Gray, M.L. & Schmidt, M.A. An integrated liquid mixer/valve J. Microelectromech. Syst. 9, 295–302 (2000).

    Article  CAS  Google Scholar 

  12. Stroock, A.D. et al. Chaotic mixer for microchannel. Science 295, 647–651 (2002).

    Article  CAS  Google Scholar 

  13. Paik, P., Pamula, V.K. & Fair, R.B. Rapid droplet mixers for digital microfluidic systems. Lab. Chip 3, 253–259 (2003).

    Article  CAS  Google Scholar 

  14. Paik, P., Pamula, V.K., Pollack, M.G. & Fair, R.B. Eletrowetting-based droplet mixers for microfluidic systems. Lab. Chip 3, 28–33 (2003).

    Article  CAS  Google Scholar 

  15. Hong, C.C., Choi, J.W. & Ahn, C.H. A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab. Chip 4, 109–113 (2004).

    Article  CAS  Google Scholar 

  16. Liu, R.H. et al. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst. 9, 190–197 (2000).

    Article  Google Scholar 

  17. Oddy, M.H., Santiago, J.G. & Mikkelsen, J.C. Electrokinetic instability micromixing. Anal. Chem. 73, 5822–5832 (2001).

    Article  CAS  Google Scholar 

  18. Duffy, D.C., McDonald, J.C., Schueller, O.J.A. & Whitesides, G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  Google Scholar 

  19. Xia, Y.N. & Whitesides, G.M. Soft lithography. Annu. Rev. Mar. Sci. 28, 153–184 (1998).

    CAS  Google Scholar 

  20. Jo, B.H., Van Lerberghe, L.M., Motsegood, K.M. & Beebe, D.J. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 9, 76–81 (2000).

    Article  CAS  Google Scholar 

  21. Ju, J., Warrick, J. & Beebe, D.J. A Cell Programmable Assay (CPA) chip. Lab. Chip 10, 2071–2076 (2010).

    Article  CAS  Google Scholar 

  22. Hatch, A., Garcia, E. & Yager, P. Diffusion-based analysis of molecular interactions in microfluidic devices. Proc. IEEE 92, 126–139 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongil Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, J., Warrick, J. Passive micromixer using by convection and surface tension effects with air-liquid interface. BioChip J 7, 361–366 (2013). https://doi.org/10.1007/s13206-013-7407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-013-7407-1

Keywords

Navigation